Big Data and Information Analytics (BDIA)

What's the big deal about big data?
Pages: 31 - 79, Issue 1, January 2016

doi:10.3934/bdia.2016.1.31      Abstract        References        Full text (870.8K)           Related Articles

Nick Cercone, F'IEEE - Department of Electrical Engineering and Computer Science, Lassonde School of Engineering, York University, Toronto, Ontario, Canada M3J 1P3, Canada (email)

1 T. White, Hadoop: The Definitive Guide, O'Reilly Media, 2012.
2 K. Cukier, Data, data everywhere, The Economist, (2010), p30.
3 A. Jones and B. Kerschberg, What technology-assisted electronic discovery teaches us about the role of humans in technology - Re-humanizing technology-assisted review, Forbes, 2012.
4 A. Watters, The Age of Exabytes: Tools and Approaches for Managing Big Data, Hewlett-Packard Development Company, 2010.
5 Editorial, Community cleverness required, Nature, 455 (2008), p7209.
6 O. J. Reichman, M. B. Jones and M. P. Schildhauer, Challenges and opportunities of open data in ecology, Science, 331 (2011), 703-705.
7 M. N. Garofalakis, J. Gehrke and R. Rastogi, Querying and mining data streams: You only get one look a tutorial, in: Proc. 2002 ACM SIGMOD Int. Conf. On Management-of Data, SIGMOD'02, Madison, WI, (2002), p635.
8 H. J. Woo and W. S. Lee, EstMax: Tracing maximal frequent itemsets over online data streams, in: Proc. ICDM, 2007, 709-714.
9 Y. Zhu and D. Shasha, Statstream: Statistical monitoring of thousands of data streams in real time, in: Proc. VLDB, 2002, 358-369.
10 H. Li and S. Lee, Mining frequent itemsets over data streams using efficient window sliding techniques, presented at Expert Syst. Appl., 36 (2009), 1466-1477.
11 Z. Farzanyar, M. Kangavari and N. Cercone, Max-FISM: Mining (recently) maximal frequent itemsets over data streams using the sliding window model, Computers & Mathematics with Applications, 64 (2012), 1706-1718.       
12 Z. Farzanyar, M. Kangavari and N. Cercone, P2P-FISM: mining (recently) frequent itemsets from distributed data streams over P2P network, Information Processing Letters, 113 (2013), 793-798.       
13 A. Rajaraman and J. D. Ullman, Mining of Massive Datasets, Cambridge University Press, Cambridge, 2012.       
14 B. Gassman and R. Knox, 'Cloud Analytics' Means Many Different Kinds of Opportunity, Gartner Research, Stamford, CT, Tech. Rep. 1386527, 2010.
15 A. Cuzzocrea, I. Song and K. C. Davis, Analytics over large-scale multidimensional data: The big data revolution!, in Proceedings of the ACM 14th International Workshop on Data Warehousing and OLAP, Glasgow, Scotland, UK, (2011), 101-104.
16 S. Frischbier and I. Petrov, Aspects of data-intensive cloud computing, in Anonymous, 2010, 57-77.
17 H. Vashishtha, M. Smit and E. Stroulia, Moving text analysis tools to the cloud}, in IEEE Congress on Services, (2010), 107-114.
18 K. Doka, D. Tsoumakos and N. Koziris, Efficient updates for a shared nothing analytics platform, in Proceedings of the 2010 Workshop on Massive Data Analytics on the Cloud, Raleigh, North Carolina, 1 (2010), 1-6.
19 I. Konstantinou, E. Angelou, D. Tsoumakos and N. Koziris, Distributed indexing of web scale datasets for the cloud, in Proceedings of the 2010 Workshop on Massive Data Analytics on the Cloud, Raleigh, North Carolina, 1 (2010), 1-6.
20 M. Shmueli-Scheuer, H. Roitman, D. Carmel, Y. Mass and D. Konopnicki, Extracting user profiles from large scale data, in Proceedings of the 2010 Workshop on Massive Data Analytics on the Cloud, Raleigh, North Carolina, 4 (2010), 1-6.
21 K. S. Beyer, V. Ercegovac, R. Krishnamurthy, S. Raghavan, J. Rao, F. Reiss, E. J. Shekita, D. E. Simmen, S. Tata, S. Vaithyanathan and H. Zhu, Towards a scalable enterprise content analytics platform, IEEE Data Eng.Bull., 32 (2009), 28-35.
22 G. Lee, B. Chun and H. Katz, Heterogeneity-aware resource allocation and scheduling in the cloud, In Proceedings of the 3rd USENIX conference on Hot topics in cloud computing (HotCloud'11), USENIX Association, Berkeley, CA, USA, 2011.
23 M. Shtern, B. Simmons, M. Smit and M. Litoiu, Toward an ecosystem for precision sharing of segmented big data, Submitted to the IEEE Conference on Cloud Computing, (2013), 335-342.
24 H. Li and J. Jeng, CCMarketplace: A marketplace model for a hybrid cloud, in Proceedings of the 2010 Conference of the Center for Advanced Studies on Collaborative Research, Toronto, Ontario, Canada, (2010), 174-183.
25 M. Hajjat, X. Sun, Y. E. Sung, D. Maltz, S. Rao, K. Sripanidkulchai and M. Tawarmalani, Cloudward bound: planning for beneficial migration of enterprise applications to the cloud, SIGCOMM Comput.Commun.Rev., 40 (2010), 243-254.
26 C. Baun and M. Kunze, The KOALA cloud management service: A modern approach for cloud infrastructure management, in Proceedings of the First International Workshop on Cloud Computing Platforms, Salzburg, Austria, 1 (2011), 1-6.
27 K. Zhang, X. Zhou, Y. Chen, X. Wang and Y. Ruan, Sedic: Privacy-aware data intensive computing on hybrid clouds, in Proceedings of the 18th ACM Conference on Computer and Communications Security, Chicago, Illinois, USA, 2011, 515-526.
28 L. Abraham, M. A. Murphy, M. Fenn and S. Goasguen, Self-provisioned hybrid clouds, in Proceeding of the 7th International Conference on Autonomic Computing, Washington, DC, USA, 2010, 161-168.
29 H.-P. Company, Enterprise cloud services - compute $|$ HP services, 2011 (Nov 15), Available: http://www.hp.com/enterprise/cloud
30 Fujitsu, FACT SHEET: Fujitsu hybrid cloud services for windows azure, 2011 (Nov 16), 2011, Available: http://solutions.us.fujitsu.com/pdf/services/Services-Cloud-Hybrid-Windows-Azure-factsheet.pdf
31 IBM, A highly scalable, low-touch private cloud which offers near zero downtime, rapid image deployment and automated recovery across heterogeneous platforms - IBM SmartCloud provisioning software, 2011 Available: http://www-01.ibm.com/software/tivoli/products/smartcloud-provisioning/
32 IBM, IBM infrastructure as a service, 2011. Available: http://www-935.ibm.com/services/us/en/cloud-enterprise/index.html
33 A. S. Foundation, Deltacloud $|$ many clouds. one API. no problem. 2011 (Nov 14), Available: http://incubator.apache.org/deltacloud/
34 A. S. Foundation, Apache libcloud $|$ a unified interface to the cloud. 2011 (Nov 14), Available: http://libcloud.apache.org/
35 jClouds Inc, jClouds. 2011 (Nov 14), Available: http://www.jclouds.org/
36 D. Bernstein, E. Ludvigson, K. Sankar, S. Diamond and M. Morrow, Blueprint for the intercloud - protocols and formats for cloud computing interoperability, in Proceedings of the 2009 Fourth International Conference on Internet and Web Applications and Services. Washington, DC, USA: IEEE Computer Society, 2009, 328-336.
37 R. Buyya, R. Ranjan and R. N. Calheiros, Intercloud: Utility-oriented federation of cloud computing environments for scaling of application services, in ICA3PP, 6081 (2010), 13-31.
38 A. Khajeh-Hosseini, I. Sommerville, J. Bogaerts and P. B. Teregowda, Decision support tools for cloud migration in the enterprise, in Cloud Computing (CLOUD), 2011 IEEE International Conference on, L. Liu and M. Parashar, Eds. IEEE, 2011, 541-548.
39 S.-M. Han, M. M. Hassan, C.-W. Yoon and E.-N. Huh, Efficient service recommendation system for cloud computing market, in Proceedings of the 2nd International Conference on Interaction Sciences: Information Technology, Culture and Human, ser. ICIS '09. New York, NY, USA: ACM, 2009, 839-845.
40 E. Mathisen, Security challenges and solutions in cloud computing, in the proceedings of 5th IEEE International Conference on Digital Ecosystems and Technologies (IEEE DEST 2011), 31 May - 3 June, 2011, Daejeon, Korea, 208-212.
41 L. Tang and T. Li, Discovering Lag Intervals for Temporal Dependencies, 18th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD-2012), Beijing, China, (2012), 633-641.
42 L. Zhong and J. Wu, On Modeling Data Mining with Time Granularity, 2009 International Conference on Computational Intelligence and Natural Computing (CINC '09), Wuhan, China, 2009.
43 P. Viappiani, S. Zilles, H. J. Hamilton and C. Boutilier, Learning complex concepts using crowdsourcing: A bayesian approach, In Second International Conference on Algorithmic Decision Theory (ADT 2011), Rutgers University, October, 6992 (2011), 277-291.
44 L. Geng and H. J. Hamilton, Interestingness measures for data mining: A survey, ACM Comput. Surv., 38 (2006), Article 9.
45 L. J. Li and M. Zhang, The strategy of mining association rule based on cloud computing, International Conference on Business Computing and Global Informatization (BCGIN), (2011), 475-478.
46 R. J. Hilderman, H. J. Hamilton and N. Cercone, Data mining in large databases using domain generalization graphs, J. of Intelligent Information Systems, 13 (1999), 195-234.
47 E. Mancini, U. Villano, M. Rak and R. Torella, A simulation-based framework for autonomic web services, In 11th International Conference on Parallel and Distributed Systems, (2005), 433-437.
48 W. Iqbal, M. Dailey and D. Carrera, SLA-driven adaptive resource management for web applications on a heterogeneous compute cloud, Cloud Computing, 5391 (2009), 243-253.
49 B. Simmons, M. Litoiu, D. Ionescu and G. Iszlai, Towards a cloud optimization architecture using strategy-trees, in Proceedings of The 9th International Information and Telecommunication Technologies Symposium (I2TS 2010), December, Rio de Janeiro, Brazil, (2010), 13-15.
50 P. Pawluk, B. Simmons, M. Smit, M. Litoiu and S. Mankovski, Introducing STRATOS: A cloud broker service, in IEEE 5th International Conference on Cloud Computing (CLOUD), (2012), 891-898.
51 X. Lin, Survey on Cloud Based Mobile Security and A New Framework for Improvement, the proceeding of the IEEE International Conference on Information and Automation, Shenzhen, China, 2011.
52 J. W. Hong, Monitoring and detecting abnormal behavior in mobile cloud infrastructure, published in 2012 IEEE Network Operations and Management Symposium, 1303-1310.
53 I. Roy, S. T. Setty, A. Kilzer, V. Shmatikov and E. Witchel, Airavat: Security and privacy for MapReduce, in Proceedings of the 7th USENIX conference on Networked systems design and implementation, USENIX Association, 2010.
54 S Saklikar, Embedding Security and Trust Primitives in Map Reduce, Presented at RSA Conference China, Trusted Computing session, August 29, 2012.
55 N. Gehlenborg and S. I. O'Donoghue, et al., Visualization of omics data for systems biology, Nat Methods, 7 (2010), S56-S68.
56 G. A. Pavlopoulos and A. L. Wegener, et al., A survey of visualization tools for biological network analysis, BioData Min, 1 (2008), p12.
57 M. Suderman and M. Hallett, Tools for visually exploring biological networks, Bioinformatics, 23 (2007), 2651-2659.
58 D. Merico and D. Gfeller, et al., How to visually interpret biological data using networks, Nat Biotechnol, 27 (2009), 921-924.
59 M. Ashburner and C. A. Ball, et al., Gene ontology: Tool for the unification of biology. The Gene Ontology Consortium, Nat Genet, 25 (2000), 25-29.
60 H. Hermjakob and L. Montecchi-Palazzi, et al., The HUPO PSI's molecular interaction format-a community standard for the representation of protein interaction data, Nat Biotechnol, 22 (2004), 177-183.
61 E. Jeong and M. Nagasaki, et al., Conversion from BioPAX to CSO for system dynamics and visualization of biological pathway, Genome Inform, 18 (2007), 225-236.
62 E. G. Cerami and G. D. Bader, et al., cPath: open source software for collecting, storing, and querying biological pathways, BMC Bioinformatics, 7 (2006), p497.
63 L. Ein-Dor and I. Kela, et al., Outcome signature genes in breast cancer: Is there a unique set?, Bioinformatics, 21 (2005), 171-178.
64 P. C. Boutros and S. K. Lau, et al., Prognostic gene signatures for non-small-cell lung cancer, Proc Natl Acad Sci USA, 106 (2009), 2824-2828.
65 L. Ein-Dor and O. Zuk, et al., Thousands of samples are needed to generate a robust gene list for predicting outcome in cancer, Proc Natl Acad Sci USA, 103 (2006), 5923-5928.
66 S. K. Lau and P. C. Boutros, et al., Three-gene prognostic classifier for early-stage non small-cell lung cancer, J Clin Oncol, 25 (2007), 5562-5569.
67 A. Heifets and I. Jurisica, SCRIPDB: A portal for easy access to syntheses, chemicals and reactions in patents, Nucleic acids research, 40 (2012), D428-D433.
68 K. Fortney and W. Xie, et al., NetwoRx: Connecting drugs to networks and phenotypes in Saccharomyces cerevisiae, Nucleic Acids Research, 41 (2013), D720-D727.
69 L. H. Chu and B. S. Chen, Construction of a cancer-perturbed protein-protein interaction network for discovery of apoptosis drug targets, Chapter: Systems Biology for Signaling Networks, (2010), 589-610.
70 M. S. Tsao and S. Aviel-Ronen, et al., Prognostic and predictive importance of p53 and RAS for adjuvant chemotherapy in non small-cell lung cancer, J Clin Oncol, 25 (2007), 5240-5247.
71 J. A. Foekens and D. Atkins, et al., Multicenter validation of a gene expression-based prognostic signature in lymph node-negative primary breast cancer, J Clin Oncol, 24 (2006), 1665-1671.
72 M. Buyse and S. Loi, et al., Validation and clinical utility of a 70-gene prognostic signature for women with node-negative breast cancer, J Natl Cancer Inst, 98 (2006), 1183-1192.
73 D. Spentzos and D. A. Levine, et al., Gene expression signature with independent prognostic significance in epithelial ovarian cancer, J Clin Oncol, 22 (2004), 4700-4710.
74 C. M. McKee and D. Xu, et al., Protease nexin 1 inhibits hedgehog signaling in prostate adenocarcinoma, The Journal of clinical investigation, 122 (2012), 4025-4036.
75 P. P. Reis and L. Waldron, et al., A gene signature in histologically normal surgical margins is predictive of oral carcinoma recurrence, BMC Cancer, 11 (2011), p437.
76 K. Eppert and K. Takenaka, et al., Stem cell gene expression programs influence clinical outcome in human leukemia, Nature medicine, 17 (2011), 1086-1093.
77 C. Q. Zhu and K. Ding, et al., Prognostic and predictive gene signature for adjuvant chemotherapy in resected non-small-cell lung cancer, J Clin Oncol, 28 (2010), 4417-4424.
78 B. Cox and M. Kotlyar, et al., Comparative systems biology of human and mouse as a tool to guide the modeling of human placental pathology, Mol Syst Biol, 5 (2009), p279.
79 R. Tomasini and K. Tsuchihara, et al., TAp73 knockout shows genomic instability with infertility and tumor suppressor functions, Genes Dev, 22 (2008), 2677-2691.
80 K. L. Gortzak Gortzak Sodek and A. I. Evangelou, et al., Identification of pathways associated with invasive behavior by ovarian cancer cells using multidimensional protein identification technology (MudPIT), Mol Biosyst, 4 (2008), 762-773.
81 L. Gortzak-Uzan and A. Ignatchenko, et al., A proteome resource of ovarian cancer ascites: Integrated proteomic and bioinformatic analyses to identify putative biomarkers, J Proteome Res, 7 (2008), 339-351.
82 G. B. Mills and I. Jurisica, et al., Genomic amplicons target vesicle recycling in breast cancer, J Clin Invest, 119 (2009), 2171-2183.
83 R. Agarwal and I. Jurisica, et al., The emerging role of the RAB25 small GTPase in cancer, Traffic, 10 (2009), 1561-1568.
84 K. R. Brown and I. Jurisica, Unequal evolutionary conservation of human protein interactions in interologous networks, Genome Biol, 8 (2007), R95.
85 S. Elschenbroich and V. Ignatchenko, et al., In-depth proteomics of ovarian cancer ascites: Combining shotgun proteomics and selected reaction monitoring mass spectrometry, Journal of proteome research, 10 (2011), 2286-2299.
86 Q. Chang and I. Jurisica, et al., Hypoxia predicts aggressive growth and spontaneous metastasis formation from orthotopically grown primary xenografts of human pancreatic cancer, Cancer research, 71 (2011), 3110-3120.
87 H. Jeong and S. P. Mason, et al., Lethality and centrality in protein networks, Nature, 411 (2001), 41-42.
88 M. W. Hahn and A. D. Kern, Comparative genomics of centrality and essentiality in three eukaryotic protein-interaction networks, Mol Biol Evol, 22 (2005), 803-806.
89 S. Maslov and K. Sneppen, Specificity and stability in topology of protein networks, Science, 296 (2002), 910-913.
90 A. C. Gavin and M. Bosche, et al., Functional organization of the yeast proteome by systematic analysis of protein complexes, Nature, 415 (2002), 141-147.
91 S. Wuchty, Topology and weights in a protein domain interaction network-a novel way to predict protein interactions, BMC Genomics, 7 (2006), p122.
92 E. Ravasz and A. L. Somera, et al., Hierarchical organization of modularity in metabolic networks, Science, 297 (2002), 1551-1555.
93 H. Yu and M. Gerstein, Genomic analysis of the hierarchical structure of regulatory networks, Proc Natl Acad Sci USA, 103 (2006), 14724-14731.
94 J. D. Han and N. Bertin, et al., Evidence for dynamically organized modularity in the yeast protein-protein interaction network, Nature, 430 (2004), 88-93.
95 K. Fortney and M. Kotlyar, et al., Inferring the functions of longevity genes with modular subnetwork biomarkers of Caenorhabditis elegans aging, Genome Biol, 11 (2010), R13.
96 R. Milo and S. Shen-Orr, et al., Network motifs: Simple building blocks of complex networks, Science, 298 (2002), 824-827.
97 J. J. Rice and A. Kershenbaum, et al., Lasting impressions: Motifs in protein-protein maps may provide footprints of evolutionary events, Proc Natl Acad Sci USA, 102 (2005), 3173-3174.
98 N. Przulj and D. G. Corneil, et al., Modeling interactome: Scale-free or geometric?, Bioinformatics, 20 (2004), 3508-3515.
99 M. Barrios-Rodiles and K. R. Brown, et al., High-throughput mapping of a dynamic signaling network in mammalian cells, Science, 307 (2005), 1621-1625.
100 W. Hu and Z. Feng, et al., A single nucleotide polymorphism in the MDM2 gene disrupts the oscillation of p53 and MDM2 levels in cells, Cancer Res, 67 (2007), 2757-2765.
101 R. Jansen and D. Greenbaum, et al., Relating whole-genome expression data with protein-protein interactions, Genome Res, 12 (2002), 37-46.
102 T. Kato and Y. Murata, et al., Network-based de-noising improves prediction from microarray data, BMC Bioinformatics, 7 (2006), S4.
103 P. F. Jonsson and P. A. Bates, Global topological features of cancer proteins in the human interactome, Bioinformatics, 22 (2006), 2291-2297.
104 S. Wachi and K. Yoneda, et al., Interactome-transcriptome analysis reveals the high centrality of genes differentially expressed in lung cancer tissues, Bioinformatics, 21 (2005), 4205-4208.
105 A. D. King and N. Przulj, et al., Protein complex prediction with RNSC, Methods in molecular biology, 804 (2011), 297-312.
106 N. Przulj and D. G. Corneil, et al., Efficient estimation of graphlet frequency distributions in protein-protein interaction networks, Bioinformatics, 22 (2006), 974-980.
107 T. Ideker and O. Ozier, et al., Discovering regulatory and signalling circuits in molecular interaction networks, Bioinformatics, 18 (2002), S233-S240.
108 H. Y.Chuang and E. Lee, et al., Network-based classification of breast cancer metastasis, Mol Syst Biol, 3 (2007), p140.
109 S. Nacu and R. Critchley-Thorne, et al., Gene expression network analysis and applications to immunology, Bioinformatics, 23 (2007), 850-858.
110 D. Hwang and J. J. Smith, et al., A data integration methodology for systems biology: Experimental verification, Proc Natl Acad Sci USA, 102 (2005), 17302-17307.
111 N. Przulj and D. A. Wigle, et al., Functional topology in a network of protein interactions, Bioinformatics, 20 (2004), 340-348.
112 J. Dong and T. Kislinger, et al., Lung cancer: Developmental networks gone awry?, Cancer Biol Ther, 8 (2009), 312-318.
113 S. K. Burley, A. Joachimiak, G. T. Montelione and I. A. Wilson, Contributions to the NIH-NIGMS protein structure initiative from the PSI production centers, Structure, 16 (2008), 5-11.
114 W. J. Chazin, Evolution of the NIGMS protein structure initiative, Structure, 16 (2008), 12-14.
115 A. M. Edwards and E. A. Edwards, A future for the protein structure initiative, Structure, 15 (2007), 1525-1526.
116 J. A. Gerlt, A protein structure (or function?) initiative, Structure, 15 (2007), 1353-1356.
117 S. C. Harrison, Comments on the NIGMS PSI, Structure, 15 (2007), 1344-1346.
118 W. A. Hendrickson, Impact of structures from the protein structure initiative, Structure, 15 (2007), 1528-1529.
119 C. J. Mayo, et al., Benefits of automated crystallization plate tracking, imaging, and analysis, Structure, 13 (2005), 175-182.
120 A. McPherson, Some ill considered comments on the protein structure initiative, Structure, 15 (2007), 1526-1527.
121 P. B. Moore, Let's call the whole thing off: Some thoughts on the protein structure initiative, Structure, 15 (2007), 1350-1352.
122 J. C. Norvell and J. M. Berg, Update on the protein structure initiative, Structure, 15 (2007), 1519-1522.
123 T. A. Steitz, Collecting butterflies and the protein structure initiative: The right questions?, Structure, 15 (2007), 1523-1524.
124 I. A. Vakser, PSI has to live and become PCI: Protein complex initiative, Structure, 16 (2008), 1-3.
125 M. Adams, A. Joachimiak, R. Kim, G. T. Montelione and J. Norvell, Meeting review: 2003 NIH protein structure initiative workshop in protein production and crystallization for structural and functional genomics, J Struct Funct Genomics, 5 (2004), 1-2.
126 R. Service, Structural biology. Structural genomics, round 2, Science, 307 (2005), 1554-1558.
127 J. Moult, Comparative modeling in structural genomics, Comparative Modeling in Structural Genomics. Structural Proteomics and Its Impact on the Life Sciences, (2008), 121-134.
128 A. Yee, A. Gutmanas and C. H. Arrowsmith, Solution NMR in structural genomics, Curr Opin Struct Biol, 16 (2006), 611-617.
129 W. Peti, et al., Towards miniaturization of a structural genomics pipeline using micro-expression and microcoil NMR, J Struct Funct Genomics, 6 (2005), 259-267.
130 R. Page, W. Peti, I. A. Wilson, R. C. Stevens and K. Wuthrich, NMR screening and crystal quality of bacterially expressed prokaryotic and eukaryotic proteins in a structural genomics pipeline, Proc Natl Acad Sci USA, 102 (2005), 1901-1905.
131 T. B. Acton, et al., Robotic cloning and protein production platform of the northeast structural genomics consortium, Methods Enzymol, 394 (2005), 210-243.
132 B. W. Segelke, et al., Laboratory scale structural genomics, J Struct Funct Genomics, 5 (2004), 147-157.
133 C. A. Floudas, Computational methods in protein structure prediction, Biotechnol Bioeng, 97 (2007), 207-213.
134 J. T. Guo, et al., PROSPECT-PSPP: an automatic computational pipeline for protein structure prediction, Nucleic Acids Res, 32 (2004), W522-W525.
135 C. Lambert, N. Leonard, X. De Bolle and E. Depiereux, ESyPred3D: Prediction of proteins 3D structures, Bioinformatics, 18 (2002), 1250-1256.
136 R. Srinivasan and G. D. Rose, Ab initio prediction of protein structure using LINUS, Proteins, 47 (2002), 489-495.
137 G. Helles, A comparative study of the reported performance of ab initio protein structure prediction algorithms, J R Soc Interface, 5 (2008), 387-396.
138 A. R. Oganov and C. W. Glass, Crystal structure prediction using ab initio evolutionary techniques: Principles and applications, J Chem Phys, 124 (2006), 244704.
139 Y. Zhang, A. Kolinski and J. Skolnick, TOUCHSTONE II: A new approach to ab initio protein structure prediction, Biophys J, 85 (2003), 1145-1164.
140 C. Hardin, T. V. Pogorelov and Z. Luthey-Schulten, Ab initio protein structure prediction, Curr Opin Struct Biol, 12 (2002), 176-181.
141 R. Bonneau, et al., Rosetta in CASP4: Progress in ab initio protein structure prediction, Proteins Suppl, 45 (2001), 119-126.
142 J. M. Aramini, P. Rossi, C. Anklin, R. Xiao and G. T. Montelione, Microgram-scale protein structure determination by NMR, Nat Methods, 4 (2007), 491-493.
143 L. Parsons and J. Orban, Structural genomics and the metabolome: Combining computational and NMR methods to identify target ligands, Curr Opin Drug Discov Devel, 7 (2004), 62-68.
144 D. Staunton, J. Owen and I. D. Campbell, NMR and structural genomics, Acc Chem Res, 36 (2003), 207-214.
145 R. Powers, Applications of NMR to structure-based drug design in structural genomics, J Struct Funct Genomics, 2 (2002), 113-123.
146 M. A. Kennedy, G. T. Montelione, C. H. Arrowsmith and J. L. Markley, Role for NMR in structural genomics, J Struct Funct Genomics, 2 (2002), 155-169.
147 G. T. Montelione, D. Zheng, Y. J. Huang, K. C. Gunsalus and T. Szyperski, Protein NMR spectroscopy in structural genomics, Nat Struct Biol, 7 (2000), 982-985.
148 S. Radaev, S. Li and P. D. Sun, A survey of protein-protein complex crystallizations, Acta Crystallogr D Biol Crystallogr, 62 (2006), 605-612.
149 I. Schlichting, X-ray crystallography of protein-ligand interactions, Methods Mol Biol, 305 (2005), 155-166.
150 H. Ohishi, et al., The development of crystallization and X-ray crystallography method of long stem DNA, Nucleic Acids Symp Ser (Oxf), 49 (2005), 67-68.
151 F. Schotte, J. Soman, J.S. Olson, M. Wulff and P. A. Anfinrud, Picosecond time-resolved X-ray crystallography: Probing protein function in real time, J Struct Biol, 147 (2004), 235-246.
152 T. L. Blundell and S. Patel, High-throughput X-ray crystallography for drug discovery, Curr Opin Pharmacol, 4 (2004), 490-496.
153 R. Hui and A. Edwards, High-throughput protein crystallization, J Struct Biol, 142 (2003), 154-161.
154 J. R. Luft and G. T. DeTitta, A method to produce microseed stock for use in the crystallization of biological macromolecules, Acta Crystallogr D Biol Crystallogr, 55 (1999), 988-993.
155 M. Andrec, et al., A large data set comparison of protein structures determined by crystallography and NMR: statistical test for structural differences and the effect of crystal packing, Proteins, 69 (2007), 449-465.
156 S. Kim and T. Szyperski, GFT NMR, a new approach to rapidly obtain precise high-dimensional NMR spectral information, J Am Chem Soc, 125 (2003), 1385-1393.
157 D. A. Snyder, et al., Comparisons of NMR spectral quality and success in crystallization demonstrate that NMR and X-ray crystallography are complementary methods for small protein structure determination, J Am Chem Soc, 127 (2005), 16505-16511.
158 J. Luft, et al., Macromolecular crystallization in a high throughput laboratory - the search phase, Journal of Crystal Growth, 232 (2001), 591-595.
159 N. E. Chayen and E. Saridakis, Protein crystallization for genomics: Towards high-throughput optimization techniques, Acta Crystallogr D Biol Crystallogr, 58 (2002), 921-927.
160 M. Hiraki, et al., Development of an automated large-scale protein-crystallization and monitoring system for high-throughput protein-structure analyses, Acta Crystallogr D Biol Crystallogr, 62 (2006), 1058-1065.
161 S. L. Morissette, et al., High-throughput crystallization: Polymorphs, salts, co-crystals and solvates of pharmaceutical solids, Adv Drug Deliv Rev, 56 (2004), 275-300.
162 A. D'Arcy, A. M. Sweeney and A. Haber, Practical aspects of using the microbatch method in screening conditions for protein crystallization, Methods, 34 (2004), 323-328.
163 B. Rupp, Maximum-likelihood crystallization, J Struct Biol, 142 (2003), 162-169.
164 R. Page, et al., Shotgun crystallization strategy for structural genomics: An optimized two-tiered crystallization screen against the Thermotoga maritima proteome, Acta Crystallogr D Biol Crystallogr, 59 (2003), 1028-1037.
165 V. Klyushnichenko, Protein crystallization: From HTS to kilogram-scale, Curr Opin Drug Discov Devel, 6 (2003), 848-854.
166 J. C. Grunlan, A. R. Mehrabi, A. T. Chavira, A. B. Nugent and D. L. Saunders, Method for combinatorial screening of moisture vapor transmission rate, J Comb Chem, 5 (2003), 362-368.
167 G. Juarez-Martinez, P. Steinmann, A. W. Roszak, N. W. Isaacs and J. M. Cooper, High-throughput screens for postgenomics: Studies of protein crystallization using microsystems technology, Anal Chefm, 74 (2002), 3505-3510.
168 E. H. Snell and A. M. Lauricella, et al., Establishing a training set through the visual analysis of crystallization trials. Part II: Crystal examples, Acta Crystallogr D Biol Crystallogr, 64 (2008), 1131-1137.
169 E. H. Snell and J. R. Luft, et al., Establishing a training set through the visual analysis of crystallization trials. Part I: Approximately 150,000 images, Acta Crystallogr D Biol Crystallogr, 64 (2008), 1123-1130.
170 M. J. McGuffin and I. Jurisica, Interaction techniques for selecting and manipulating subgraphs in network visualizations, IEEE Trans Vis Comput Graph, 15 (2009), 937-944.
171 A. D'Arcy, Crystallizing proteins - a rational approach?, Acta Crystallogr D Biol Crystallogr, 50 (1994), 469-471.
172 A. M. Hassell, T. J. Harrocks, E. H. Dashman and A. Mistry, Two distinct approaches to crystallization results-recording databases, Acta Crystallogr D Biol Crystallogr, 50 (1994), 459-465.
173 D. Hennessy, V. Gopalakrishnan, B. G. Buchanan, J. M. Rosenberg and D. Subramanian, Induction of rules for biological macromolecule crystallization, Proc Int Conf Intell Syst Mol Biol, 2 (1994), 179-187.
174 D. Hennessy, B. Buchanan, D. Subramanian, P. A. Wilkosz and J. M. Rosenberg, Statistical methods for the objective design of screening procedures for macromolecular crystallization, Acta Crystallogr D Biol Crystallogr, 56 (2000), 817-827.
175 I. Jurisica, et al., High throughput macromolecular crystallization: An application of case-based reasoning and data mining, in Methods in Macromolecular Crystallography (eds. Johnson, L. & Turk, D.) (Kluwer Academic Press, 2000).
176 I. Jurisica and J. Glasgow, Extending case-based reasoning by discovering and using image features in IVF, in ACM Symposium on Applied Computing (SAC 2000), ACM Press, Villa Olmo, Como, Italy, (2000), 52-59.
177 I. Jurisica, et al., Image-feature extraction for protein crystallization: Integrating image analysis and case-based reasoning, in The Thirteenth Innovative Applications of Artificial Intelligence Conference on Artificial Intelligence (IAAI-2001), AAAI Press, Seattle, WA, 2001.
178 I. Jurisica, et al., Improving objectivity and scalability in protein crystallization: Integrating image analysis with knowledge discovery, IEEE Intelligent Systems Journal, Special Issue on Intelligent Systems in Biology, 16 (2001), 26-34.
179 I. Jurisica, et al., Intelligent decision support for protein crystal growth, IBM Systems Journal, Special Issue on Deep Computing for Life Sciences, 40 (2001), 394-409.
180 G. Spraggon, S. A. Lesley, A. Kreusch and J. P. Priestle, Computational analysis of crystallization trials, Acta Crystallogr D Biol Crystallogr, 58 (2002), 1915-1923.
181 C. S. Goh, et al., SPINE 2: A system for collaborative structural proteomics within a federated database framework, Nucleic Acids Res, 31 (2003), 2833-2838.
182 M. S. Kimber, et al., Data mining crystallization databases: Knowledge-based approaches to optimize protein crystal screens, Proteins, 51 (2003), 562-568.
183 B. Rupp and J. Wang, Predictive models for protein crystallization, Methods, 34 (2004), 390-407.
184 C. S. Goh, et al., Mining the structural genomics pipeline: Identification of protein properties that affect high-throughput experimental analysis, J Mol Biol, 336 (2004), 115-130.
185 I. Jurisica and J. Glasgow, Application of case-based reasoning in molecular biology, Artificial Intelligence Magazine, Special issue on Bioinformatics, 25 (2004), 85-95.
186 R. Page and R. C. Stevens, Crystallization data mining in structural genomics: Using positive and negative results to optimize protein crystallization screens, Methods, 34 (2004), 373-389.
187 C. Cumbaa and I. Jurisica, Automatic classification and pattern discovery in high-throughput protein crystallization trials, J Struct Funct Genomics, 6 (2005), 195-202.
188 S. Asur, P. Raman, M. E. Otey and S. Parthasarathy, A model-based approach for mining membrane protein crystallization trials, Bioinformatics, 22 (2006), e40-e48.
189 I. Jurisica and D. A. Wigle, Knowledge Discovery in Proteomics, Chapman & Hall/CRC Press, 2006.
190 M. Kotlyar and I. Jurisica, Predicting protein-protein interactions by association mining, Information Systems Frontiers, 8 (2006), 37-47.
191 C. A. Cumbaa and I. Jurisica, Protein crystallization analysis on the World Community Grid, J Struct Funct Genomics, 11 (2010), 61-69.
192 C. Pastrello, D. Otasek, K. Fortney, G. Agapito, M. Cannataro, E. Shirdel and I. Jurisica, Visual data mining of biological networks: One size does not fit all, PLOS Comp Biol, 9 (2013), e1002833.
193 A. Chakravarthy and K. Hasse, Netserf: Using semantic knowledge to find internet information archives, Proceedings of the 18th ACM SIGIR Conference, (1995), 4-11.
194 J. Callan, Distributed information retrieval, In Croft W. B., editor, Advances in Information Retrieval, Kluwer Academic Publishers, 7 (2000), 127-150.
195 J. G. Conrad, X. S. Guo, P. jackson and M. Meziou, Database selection using actual physical and acquired logical collection resources in a massive domain-specific operational environment, Proc. of the 28th VLDB Conference, (2002), 71-82.
196 L. Si and J. Callan, Relevant document distribution estimation method for resource selection, In Proc. of SIGIR, (2003), 298-305.
197 L. Gravano, H. Garcia-Molina and A. Tomasic, Gloss: Text-source discovery over the internet, ACM Transactions on Database Systems, 24 (1999), 229-264.
198 P. Ipeirotis and L. Gravano, Distributed search over the hidden web: Hierarchical database sampling and selection, Proc. of VLDB, (2002), 394-405.
199 P. Ipeirotis and L. Gravano, Classification-aware Hidden-web Text Database Selection, Technical Report CeDER-06-04, CeDER Working Papers Series, NYU, 2008.
200 K. L. Liu, C. Yu, W. Meng, W. S. Wu and N. Rishe, A statistical method for estimating the usefulness of text databases, IEEE Transactions on Knowledge and Data Engineering, 14 (2002).
201 N. Cercone, X. An, J. Li, Z. Gu and A. An, Finding best-evidence for evidence-based best practice recommendations in health care, Knowledge and Information Systems, 29 (2011), 159-201.
202 P. Pattaraintakorn and N. Cercone, Integrating rough set theory and medical applications, Applied Mathematics Letters, 21 (2008), 400-403.       
203 Q. Wan and A. An, Transitional patterns and their significant milestones, Proceedings of the 2007 IEEE International Conference on Data Mining (ICDM'07), (2007), 691-696.
204 Y. Liu, X. Huang, A. An and X. Yu, A Sentiment-Aware Model for Predicting Sales Performance Using Blogs, Proceedings of the 30th Annual International ACM SIGIR Conference on Research & Development on Information Retrieval (SIGIR'07), Amsterdam, (2007), 607-614.
205 X. Huang, M. Wen, A. An and Y. Huang, A Platform for Okapi-Based Contextual Information Retrieval, Proceedings of the 29th Annual International ACM SIGIR Conference on Research & Development on Information Retrieval (SIGIR'06), Seattle, (2006), p728.
206 S. Soderland, Learning information extraction rules for semi-structured and free text, Machine Learning, 34 (1999).
207 M. Califf and R. J. Mooney, Relational learning of pattern-match rules for information extraction, In Proceedings of the 16th National Conference on AI (AAAI-99), Orlando, FL, 1999.
208 D. Freitag, Multistrategy learning for information extraction, In Proceedings of the Fifteenth International Conference on Machine Learning, 1998.
209 F. Ciravegna, Adaptive information extraction from text by rule induction and generalization, In Proceedings of the Seventeenth International Joint Conference on Artificial Intelligence, 2001.
210 Z. Gu, Adaptive Information Extraction from Online Documents, PhD thesis, U Waterloo, Canada, 2006.
211 A. McCallum, D. Freitag and F. Pereira, Maximum entropy Markov models for information extraction and segmentation, In Proceedings of ICML, 2000.
212 David M. Blei, Andrew Y. Ng, M. I. Jordan, Latent Dirichlet allocation, Journal of Machine Learning Research, 3 (2003), 993-1022.
213 B. Liu, Sentiment Analysis and Subjectivity, N. Indurkhya & F. Damerau, Eds., Handbook of Language Processing, CRC Press, Taylor and Francis Group, (2010), 1-38.
214 R. Picard, Human-Computer Coupling, Proceedings of the IEEE, 86 (1998), 1803-1807.
215 P. Ekman and A. J. Fridlund, Assesment of Facial Behvior In Affective Disorders, In J. D. Maser (Ed.) Depression and Expressive Behavior, Hillsdale, N.J.: Lawrence Erlbaum, (1987), 37-56.
216 P. Ekman, Universals and cultural differences in facial expressions of emotions, In J. Cole (ed.), Nebraska Symposium on Motivatioin, University of Nebraska Press, (1972), 207-283.
217 R. S. Lazarus, Emotion and Adaptation, Oxford University Press, 1991.
218 N. S. Shami and K. Ehrlich, Making sense of strangers' expertise from signals in digital artifacts, Proceeding: CHI '09 Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, (2009), 69-78.
219 C. Lee, HCI and aesthetics: The future of user interface design, http://www.carrielee.net, 2007.
220 N. Tractinsky and D. Zmiri, Exploring Attributes of Skins as Potential Antecedents of Emotion in HCI, in Fishwick, P. (ed.), Aesthetic Computing, MIT Press, 2005.
221 E. Tufte, The Visual Display of Quantitative Information, 2nd ed. Cheshire, Graphics Press, 2001.
222 C. Reas and B. Fry, Processing: A Programming Handbook for Visual Designers and Artists Cambridge, Massachusetts: MIT Press, 2007.
223 D. Ferrucci and A. Lally, UIMA: An architectural approach to unstructured information processing in the corporate research environment, Natural Language Engineering, 10 (2004), 327-348.
224 S. Bird, NLTK: The Natural Language Toolkit, Proceedings of the COLING/ACL on Interactive presentation sessions, Association for Computational Linguistics, 2006.
225 C. Marrin, Webgl Specification, Khronos WebGL Working Group, 2011.
226 I. Hickson, HTML Canvas 2D Context. W3C Working Draft, World Wide Web Consortium, 2012.
227 A. Salga, D. Hodgin, A. Sobiepanek, S. Downe, M. Medel and C. Leung, Processing. js: Sketching with $<$canvas$>$, In ACM SIGGRAPH 2011 Talks, ACM, (2011), p15,
228 M. Whitelaw, Art against information: Case studies in data practice, In: Murphy, A., ed. Proceedings, Fibreculture. Digital Arts and Culture Conference, Perth. [Internet] Available from http://eleven.fibreculturejournal.org/ [Accessed August, 2008], (2006), 1-12.
229 S. Diamond, Many points of light: Visualization and the converging aesthetics of art, design and science, reprinted 2012, in Critical Digital Studies Reader, ed. Kroker, A. & M. L.. Toronto: UT Press, 2012.
230 W. S. Cleveland, Visualizing Data. Summit, NJ: Hobart Press, 1993.
231 C. Ware and R. Bobrow, Supporting visual queries on medium-size node-link diagrams, Information Visualization, 4 (2005), London, Palgrave, 49-58.
232 S. Greenberg and B. Buxton, Usability evaluation considered harmful (some of the time), CHI 2008 Proceedings, Florence. Florence: ACM, (2008), 111-120.
233 J. Bardzell and J. Bardzell, Interaction criticism: A proposal for a framework for a new discipline of HCI, CHI 2008 Proceedings, Florence, Italy, ACM, (2008), 2463-2472.
234 Beck et al., 2001.
235 C. Spagnuolo, Social Media, Boulder, Colorado: Rally Software [Accessed, January, 2013].
236 P. Wolkerstorfer, M. Tscheligi, R. Sefelin, H. Milchrahm, Z. Hussain, M. Lechner and S. Shahzad, Probing an agile usability process, CHI 2008 Proceedings, Florence, Italy, ACM, (2008), 2151-2158.
237 S. Szigeti, F. Chevalier and S. Diamond, A faster horse: Data driven versus user-centred design for data visualization, Submitted to CHI'13, April 27 - May 2, 2013, Paris, France.
238 J. D. Gould and C. H. Lewis, Designing for usability: Key principles and what designers think, CHI '83 Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, (1983), 50-53.
239 G. Cockton, Revisiting usability's three key principles, CHI 2008 Proceedings, Florence, Florence, ACM, (2008), 2473-2484.
240 Lee, 2007.
241 N. Tractinsky, A few notes on the study of beauty in HCI, Human-Computer Interaction, 19 (2004), 351-357.
242 G. Guia, S. Oliver, S. Diamond and F. Chevalier, Visualizing sentiments in business customer relationships, ACM, CHI'12,Austin, Texas, USA, 2012.
243 S. Oliver, Guia Gali, F. Chevalier and S. Diamond, Fracturing media paradigms: Online navigation of online news media, ACM. DIS 2012, Newcastle, UK, 2012.
244 M. Sedlmair, P. Isenberg, D. Baur and A. Butz, Evaluating information visualization in large companies: Challenges, experiences and recommendations, In Proc. BELIV'10, (2010), 79-86.
245 S. Diamond, Many points of light: Visualization and the converging aesthetics of art, design and science, reprinted 2012, in Critical Digital Studies Reader, ed. Kroker, A. & M. L.. Toronto: UT Press, 2012.

Go to top