`a`
Evolution Equations and Control Theory (EECT)
 

Cauchy problem for a sixth order Cahn-Hilliard type equation with inertial term
Pages: 315 - 324, Issue 3, September 2015

doi:10.3934/eect.2015.4.315      Abstract        References        Full text (369.8K)           Related Articles

Aibo Liu - Department of Mathematics, Jilin University, Changchun 130012, China (email)
Changchun Liu - Department of Mathematics, and Key Laboratory of Symbolic Computation, and Knowledge Engineering of Ministry of Education, Jilin University, Changchun 130012, China (email)

1 S. J. Deng, W. K. Wang and H. L. Zhao, Existence theory and $L^p$ estimates for the solution of nonlinear viscous wave equation, Nonlinear Anal. Real World Appl., 11 (2010), 4404-4414.       
2 L. Duan, S. Q. Liu and H. J. Zhao, A note on the optimal temporal decay estimates of solutions to the Cahn-Hilliard equation, J. Math. Anal. Appl., 372 (2010), 666-678.       
3 P. Galenko, Phase-field model with relaxation of the diffusion flux in nonequilibrium solidification of a binary system, Phys. Lett. A, 287 (2001), 190-197.
4 P. Galenko and D. Jou, Diffuse-interface model for rapid phase transformations in nonequilibrium systems, Phys. Rev. E, 71 (2005), 046125.
5 G. Gompper and M. Kraus, Ginzburg-Landau theory of ternary amphiphilic systems. I. Gaussian interface fluctuations, Phys. Rev. E, 47 (1993), 4289-4300.
6 G. Gomppern and M. Kraus, Ginzburg-Landau theory of ternary amphiphilic systems. II. Monte Carlo simulations, Phys. Rev. E, 47 (1993), 4301-4312.
7 G. Gompper and J. Goos, Fluctuating interfaces in microemulsion and sponge phases, Phys. Rev. E, 50 (1994), 1325-1335.
8 D. Jou, J. Casas-Vazquez and G. Lebon, Extended irreversible thermodynamics, Rep. Prog. Phys., 51 (1988), 1105-1179.       
9 N. Y. Li and L. F. Mi, Pointwise estimates of solutions for the Cahn-Hilliard equation with inertial term in multi-dimensions, J. Math. Anal. Appl., 397 (2013), 75-87.       
10 C. Liu and Z. Wang, Time periodic solutions for a sixth order nonlinear parabolic equation in two space dimensions, Commun. Pure Appl. Anal., 13 (2014), 1087-1104.       
11 C. Liu and Z. Wang, Optimal control for a sixth order nonlinear parabolic equation, Mathematical Methods in the Applied Sciences, 38 (2015), 247-262.       
12 C. Liu, Regularity of solutions for a sixth order nonlinear parabolic equation in two space dimensions, Annales Polonici Mathematici, 107 (2013), 271-291.       
13 I. Pawłow and W. Zajăczkowski, A sixth order Cahn-Hilliard type equation arising in oil-water-surfactant mixtures, Commun. Pure Appl. Anal., 10 (2011), 1823-1847.       
14 G. Schimperna and I. Pawłow, On a class of Cahn-Hilliard models with nonlinear diffusion, SIAM J. Math. Anal., 45 (2013), 31-63.       
15 W. K. Wang and W. J. Wang, The pointwise estimates of solutions for semilinear dissipative wave equation in multi-dimensions, J. Math. Anal. Appl., 366 (2010), 226-241.       
16 W. K. Wang and Z. G. Wu, Optimal decay rate of solutions for Cahn-Hilliard equation with inertial term in multi-dimensions, J. Math. Anal. Appl., 387 (2012), 349-358.       

Go to top