Null controllability with constraints on the state for the 1D KuramotoSivashinsky equation
Pages: 281  296,
Issue 3,
September
2015
doi:10.3934/eect.2015.4.281 Abstract
References
Full text (450.4K)
Related Articles
Peng Gao  School of Mathematics and Statistics and Center for Mathematics and Interdisciplinary Sciences, Northeast Normal University, Changchun 130024, China (email)
1 
J. P. Aubin, L'analyse Non Linéaire et ses Motivations Économiques, Masson, Paris, 1984. 

2 
O. Bodart, M. GonzalezBurgos and R. PérezGarcía, Existence of insensitizing controls for a semilinear heat equation with a superlinear nonlinearity, Comm. Partial Diff. Eq., 29 (2004), 10171050. 

3 
E. Cerpa and A. Mercado, Local exact controllability to the trajectories of the 1D KuramotoSivashinsky equation, J. Differential Equations, 250 (2011), 20242044. 

4 
L. H. Chen and H. C. Chang, Nonlinear waves on liquid film surfacesII. Bifurcation analyses of the longwave equation, Chem. Eng. Sci., 41 (1986), 24772486. 

5 
M. Chen, Null controllability with constraints on the state for the linear Kortewegde Vries equation, Archiv der Mathematik., 104 (2015), 189199. 

6 
P. Collet, J. P. Eckmann, H. Epstein and J. Stubbe, A global attracting set for the KuramotoSivashinsky equation, Comm. Math. Phys., 152 (1993), 203214. 

7 
C. Foias, B. Nicolaenko, G. R. Sell and R. Temam, Inertial manifolds for the KuramotoSivashinsky equation and an estimate of their lowest dimension, J. Math. Pures Appl., 67 (1988), 197226. 

8 
P. Gao, Insensitizing controls for the CahnHilliard type equation, Electron. J. Qual. Theory Differ. Equ, 35 (2014), 122. 

9 
P. Gao, A new global Carleman estimate for the onedimensional KuramotoSivashinsky equation and applications to exact controllability to the trajectories and an inverse problem, Nonlinear Anal., 117 (2015), 133147. 

10 
A. Gonzalez and A. Castellanos, Nonlinear electrohydrodynamic waves on films falling down an inclined plane, Phys. Rev. E., 53 (1996), 35733578. 

11 
J. Goodman, Stability of the KuramotoSivashinsky and related systems, Comm. Pure Appl. Math., 47 (1994), 293306. 

12 
P. G. Meléndez, Lipschitz stability in an inverse problem for the main coefficient of a KuramotoSivashinsky type equation, J. Math. Anal. Appl., 408 (2013), 275290. 

13 
A. P. Hooper and R. Grimshaw, Nonlinear instability at the interface between two viscous fluids, Phys. Fluids, 28 (1985), 37245. 

14 
M. S. Jolly, I. G. Kevrekidis and E. S. Titi, Approximate inertial manifolds for the KuramotoSivashinsky equation: analysis and computations, Phys. D, 44 (1990), 3860. 

15 
Y. Kuramoto and T. Tsuzuki, On the formation of dissipative structures in reactiondiffusion systems, Theor. Phys., 54 (1975), 687699. 

16 
Y. Kuramoto, Diffusioninduced chaos in reaction systems, Suppl. Prog. Theor. Phys, 64 (1978), 346367. 

17 
Y. Kuramoto and T. Tsuzuki, Persistent propagation of concentration waves in dissipative media far from thermal equilibrium, Prog. Theor. Phys., 55 (1976), 356369. 

18 
C. LouisRose, A null controllability problem with a finite number of constraints on the normal derivative for the semilinear heat equation, Electron. J. Qual. Theory Differ. Equ., 95 (2012), 134. 

19 
J. L. Lions, Optimal Control of Systems Governed by Partial Differential Equations, SpringerVerlag, New York, 1971. 

20 
J. L. Lions, Sentinelles Pour Les Systèmes Distribués à Données Incomplètes, Masson, Paris, 1992. 

21 
R. E. Laquey, S. M. Mahajan, P. H. Rutherford and W. M. Tang, Nonlinear saturation of the trappedion mode, Phys. Rev. Lett., 34 (1975), 391394. 

22 
G. M. Mophou, Null controllability with constraints on the state for nonlinear heat equations, Forum Math., 23 (2011), 285319. 

23 
G. M. Mophou and O. Nakoulima, Null controllability with constraints on the state for the semilinear heat equation, J. Optim. Theory Appl., 143 (2009), 539565. 

24 
O. Nakoulima, Optimal control for distributed systems subject to nullcontrollability. Application to discriminating sentinels, ESAIM Control Optim. Calc. Var., 13 (2007), 623638. 

25 
B. Nicolaenko, B. Scheurer and R. Temam, Some global dynamical properties of a class of pattern formation equations, Comm. Partial Diff. Eq., 14 (1989), 245297. 

26 
S. Somdouda and G. M. Mophou, Null controllability with constraints on the state for the agedependent linear population dynamics problem, Adv. Differ. Equ. Control Process., 10 (2012), 113130. 

27 
J. Simon, Compact sets in the space $L^p(0,T;B)$, Ann. Mat. Pura Appl., 146 (1987), 6596. 

28 
G. I. Sivashinsky, Nonlinear analysis of hydrodynamic instability in laminar flamesI Derivation of basic equations, Acta Astronaut., 4 (1977), 11771206. 

29 
R. Temam and X. Wang, Estimates on the lowest dimension of inertial manifolds for the KuramotoSivashinsky equation in the general case, Differential Integral Equations, 7 (1994), 10951108. 

30 
Z. C. Zhou, Observability estimate and null controllability for onedimensional fourth order parabolic equation, Taiwanese J. Math., 16 (2012), 19912017. 

Go to top
