Energy stability for thermoviscous fluids with a fading memory heat flux
Pages: 265  279,
Issue 3,
September
2015
doi:10.3934/eect.2015.4.265 Abstract
References
Full text (370.4K)
Related Articles
Giovambattista Amendola  Dipartimento di Matematica, Largo Bruno Pontecorvo 5, Pisa, 56127, Italy (email)
Mauro Fabrizio  Dipartimento di Matematica, Piazza di Porta S. Donato 5, Bologna, 40127, Italy (email)
John Murrough Golden  School of Mathematical Sciences, Dublin Institute of Technology, Kevin Street, Dublin 8, Ireland (email)
Adele Manes  Dipartimento di Matematica, Largo Bruno Pontecorvo 5, Pisa, 56127, Italy (email)
1 
G. Amendola, Free energies for incompressible viscoelastic fluids, Quart. Appl. Math., 68 (2010), 349374. 

2 
G. Amendola and M. Fabrizio, Thermal convection in a simple fluid with fading memory, J. Math. Anal. Appl., 366 (2010), 444459. 

3 
G. Amendola, M. Fabrizio and J. M. Golden, Thermodynamics of Materials with Memory: Theory and Applications, Springer, New York, 2012. 

4 
G. Amendola, M. Fabrizio and A. Manes, On energy stability for a thermal convection in viscous fluids with memory, Palestine Journal of Mathematics, 2 (2013), 144158. 

5 
C. M. Dafermos, Contraction semigroups and trend to equilibrium in continuous mechanics, in Applications of Methods of Functional Analysis to Problems in Mechanics, Lectures Notes in Mathematics, 503, SpringerVerlag, BerlinHeidelberg, 1976, 295306. 

6 
R. Datko, Extending a theorem of A. M. Lyapunov to Hilbert space, J. Math. Anal. Appl., 32 (1970), 610616. 

7 
L. Deseri, M. Fabrizio and J. M. Golden, The concept of a minimal state in viscoelasticity: New free energies and applications to $PDE_S$, Arch. Rational Mech. Anal., 181 (2006), 4396. 

8 
C. R. Doering, B. Eckhardt and J. Schumacher, Failure of energy stability in OldroydB fluids at arbitrarily low Reynolds numbers, J. NonNewtonian Fluid Mech., 135 (2006), 9296. 

9 
M. Fabrizio, C. Giorgi and A. Morro, Free energies and dissipation properties for systems with memory, Arch. Rational Mech. Anal., 125 (1994), 341373. 

10 
M. Fabrizio and B. Lazzari, On asymptotic stability for linear viscoelastic fluids, Diff. Integral Equat., 6 (1993), 491505. 

11 
A. Lozinski and R. G. Owens, An energy estimate for the OldroydB model: Theory and applications, J. NonNewtonian Fluid Mech., 112 (2003), 161176. 

12 
A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Lectures Notes in Mathematics, 10, University of Maryland, 1974. 

13 
L. Preziosi and S. Rionero, Energy stability of steady shear flows of a viscoelastic fluid, Int. J. Eng. Sci., 27 (1989), 11671181. 

14 
M. Slemrod, An energy stability method for simple fluids, Arch. Rational Mech. Anal., 68 (1978), 118. 

15 
B. Straughan, The Energy Method, Stability, and Non Linear Convection, $2^{nd}$ edition, SpringerVerlag, New York, 2004. 

Go to top
