`a`
Journal of Modern Dynamics (JMD)
 

Hofer's length spectrum of symplectic surfaces
Pages: 219 - 235, Volume 9, 2015

doi:10.3934/jmd.2015.9.219      Abstract        References        Full text (302.9K)           Related Articles

Michael Khanevsky - Department of Mathematics, University of Chicago, 5734 S. University Avenue, Chicago, IL 60637, United States (email)

1 A. Banyaga, The Structure of Classical Diffeomorphism Groups, Mathematics and Its Applications, 400, Springer-Verlag, 1997.
2 P. Biran, M. Entov and L. Polterovich, Calabi quasimorphisms for the symplectic ball, Commun. Contemp. Math., 6 (2004), 793-802.       
3 D. Calegari, Word length in surface groups with characteristic generating sets, Proc. Amer. Math. Soc., 136 (2008), 2631-2637.       
4 M. Entov and L. Polterovich, Calabi quasimorphism and quantum homology, Int. Math. Res. Not., 2003 (2003), 1635-1676.       
5 M. Entov, L. Polterovich, P. Py and M. Khanevsky, On continuity of quasimorphisms for symplectic maps, in Perspectives in Analysis, Geometry, and Topology, Progress in Mathematics, 296, Birkhäuser, Boston, 2012.
6 B. Farb and D. Margalit, A Primer on Mapping Class Groups, Princeton Mathematical Series, Princeton University Press, Princeton, NJ, 2011.
7 M. Khanevsky, Hofer's norm and disk translations in an annulus, preprint, arXiv:1111.1923.
8 M. Khanevsky, Geometric and Topological Aspects of Lagrangian Submanifolds - Intersections, Diameter and Floer Theory, Ph.D. thesis, Tel Aviv University, 2011.
9 F. Lalonde and D. McDuff, Hofer's $l^\infty$-geometry: Energy and stability of Hamiltonian flows. Part II, Invent. Math., 122 (1995), 35-69.       
10 J.-P. Otal, Le spectre marqué des longueurs des surfaces á courbure négative, Ann. Math. (2), 131 (1990), 151-162.       
11 F. Le Roux, Six questions, a proposition and two pictures on Hofer distance for Hamiltonian diffeomorphisms on surfaces, in Symplectic Topology and Measure Preserving Dynamical Systems (eds. Y.-G. Oh, A. Fathi and C. Viterbo), Contemporary Mathematics, 512, Amer. Math. Soc., Providence, RI, 2010, 33-40.

Go to top