`a`
Mathematical Biosciences and Engineering (MBE)
 

An integrated cellular and sub-cellular model of cancer chemotherapy and therapies that target cell survival
Pages: 1219 - 1235, Issue 6, December 2015

doi:10.3934/mbe.2015.12.1219      Abstract        References        Full text (1051.7K)           Related Articles

Alexis B. Cook - Department of Applied Mathematics, Brown University, 182 George Street, Providence, RI 02906, United States (email)
Daniel R. Ziazadeh - Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, United States (email)
Jianfeng Lu - Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, United States (email)
Trachette L. Jackson - Department of Mathematics, University of Michigan, 530 Church Street, Ann Arbor, MI 48109-1043, United States (email)

1 J. M. Adams and S. Cory, The Bcl-2 protein family: Arbiters of cell survival, Science, 281 (1998), 1322-1326.
2 L. Bai, J. Chen, D. McEachern, L. Liu and H. Zhou et al., BM-1197: A novel and specific bcl-2/bcl-xl inhibitor inducing complete and long-lasting tumor regression in vivo, PLoS One, 9 (2014), e99404.
3 A. Basu and S. Krishnamurthy, BH3-only Bcl-2 family member Bim is required for apoptosis of autoreactive thymocytes, Nature, 415 (2002), 922-926.
4 P. bouillet, J. F. Purton, D. I. Godfrey et al., BH3-only proteins and their roles in programmed cell death, Oncogene, 27 (2009), S128-S136.
5 D. T. Chao and S. J. Korsmeyer, Bcl-2 family: Regulators of cell death, Annu. Rev. Immunol., 16 (1998), 395-419.
6 G. Chu, Cellular responses to cisplatin: The roles of dna-binding proteins an DNA repair, J. Biol. Chem., 269 (1994), 787-790.
7 A. W. El-Kareh and T. W. Secomb, A mathematical model for cisplatin cellular pharmacodynamics, Neoplasia, 5 (2003), 161-169.
8 A. Florea and D. Busselberg, Cisplatin As An Anti-Tumor Drug: Cellular mechanisms of activity, drug resistance and induced side effects, Cancers, 3 (2011), 1351-1371.
9 K. V. Floros, H. Thomadaki, G. Lallas, N. Katsaros, M. Talieri and A. Scorilas, Cisplatin-induced apoptosis in HL-60 human promyelocytic leukemia cells: differential expression of BCL2 and novel apoptosis-related gene BCL2L12, Ann NY Acad Sci, 1010 (2003), 153-158.
10 V. M. Gonzalez, M. A. Fuertes, C. Alonso and J. M. Perez, Is Cisplatin-Induced Cell Death Always Produced by Apoptosis?, Mol. Pharmacol., 59 (2001), 657-663.
11 H. V. Jain, A. Richardson, M. Meyer-Hermann and H. M. Byrne, Exploiting the synergy between carboplatin and ABT-737 in the treatment of ovarian carcinomas, PLoS One, 9 (2014), e81582.
12 H. V. Jain and M. Meyer-Hermann, The molecular basis of synergism between carboplatin and ABT-737 therapy targeting ovarian carcinomas, Cancer Res., 71 (2011), 705-715.
13 H. V. Jain, J. E. Nor and T. L. Jackson, Quantification of endothelial cell-targeted anti-Bcl-2 therapy and its suppression of tumor growth and vascularization, Mol. Cancer There., 8 (2009), 2926-2936.
14 H. V. Jain, J. E. Nor and T. L. Jackson, Modeling the VEGF-Bcl-2-CXCL8 pathway in intratumoral agiogenesis, Bull. Math. Biol., 70 (2008), 89-117.       
15 Z. Jiang, X. Zheng and K. M. Rich, Down-regulation of Bcl-2 and Bcl-xL expression with bispecific antisense treatment in glioblastoma cell lines induce cell death, J Neurochem, 84 (2003), 273-281.
16 Y. Jung and S. J. Lippard, Direct Cellular Responses to Platinum-Induced DNA Damage, Chem. Rev., 107 (2007), 1387-1407.
17 A. Kothandapani, V. S. Dangeti and A. R. Brown, et al., Novel role of base excision repair (BER) in mediating cisplatin cytotoxicity, J. Biol. Chem., 286 (2011), 14564-14574.
18 Q. T. Le and A. J. Giaccia, Therapeutic exploitation of the physiological and molecular genetic alterations in head and neck cancer, Clin. Cancer Res., 9 (2003), 4287-4295.
19 J. Y. Li, Y. Y. Li, W. Jin, Q. Yang, Z. M. Shao and X. S. Tian, ABT-737 reverses the acquired radioresistance of breast cancer cells by targeting Bcl-2 and Bcl-xL, J. Exp Clin. Cancer Res., 31 (2012), p102.
20 T. Lindsten, A. J. Ross and A. King et al., The combined functions of proapoptotic Bcl-2 family members bak and bax are essential for normal development of multiple tissues, Mol. Cell., 6 (2000), 1389-1399.
21 S. R. McWhinney, R. M. Goldberg and H. L. McLeod, Platinum neurotoxicity pharmacogenetics, Mol. Cancer Ther., 8 (2009), 10-16.
22 D. Mitra, S. P. Malkoski and X. Wang, Cancer stem cells in head and neck cancer, Cancers, 3 (2011), 415-427.
23 M. J. Mokhtari, A. Akbarzadeh and M. Hashemi et al., Cisplatin induces down regulation of BCL2 in T47D breast cancer cell line, Adv Studies in Biol, 4 (2012), 19-25.
24 S. Mueller, M. Schittenhelm and F. Honecker, et al., Cell-cycle progression and response of germ cell tumors to cisplatin in vitro, Int. J. Oncol., 29 (2006), 471-479.
25 D. W. Nicholson, From bench to clinic with apoptosis-based therapeutic agents, Nature, 407 (2000), 810-816.
26 D. Park, A. T. Magis and R. Li et al., Novel small-molecule inhibitors of Bcl-XL to treat lung cancer, Cancer Res., 73 (2013), 5485-5496.
27 D. Pulte and H. Brennera, Changes in survival in head and neck cancers in the late 20th and early 21st century: A period analysis, Oncologist, 15 (2010), 994-1001.
28 J. C. Reed, Apoptosis-based therapies, Nat. Rev. Drug Discov., 1 (2002), 111-121.
29 J. C. Reed, Bcl-2 family proteins: Strategies for overcoming chemoresistance in cancer, Adv. in Pharm., 41 (1997), 501-532.
30 A. W. Roberts, J. F. Seymour and J. R. Brown et al., Substantial susceptibility of chronic lymphocytic leukemia to BCL2 inhibition: Results of a phase I study of navitoclax in patients with relapsed or refractory disease, J. Clin. Oncol., 30 (2012), 488-496.
31 S. Y. Sharp, P. M. Rogers and L. R. Kelland, Transport of cisplatin and bis-acetato-ammine-dichlorocyclohexylamine Platinum(IV) (JM216) in human ovarian carcinoma cell lines: identification of a plasma membrane protein associated with cisplatin resistance, Clin. Cancer Res., 1 (1995), 981-989.
32 C. M. Sorenson, M. A. Barry and A. Eastman, Analysis of events associated with cell cycle arrest at G2 phase and cell death induced by cisplatin, JNCI., 82 (1990), 749-755.
33 J. Smith, L. M. Tho, N. Xu and D. A. Gillespie, The ATM-Chk2 and ATR-Chk1 pathways in DNA damage signaling and cancer, Adv. Cancer Res., 108 (2010), 73-112.
34 G. C. Shore and J. Viallet, Modeling the bcl-2 family of apoptosis suppressors for potential herapeutic benefit in cancer, Hemotol., 1 (2005), 226-230.
35 V. Sresht, J. R. Bellare and S. K. Gupta, Modeling the cytotoxicity of cisplatin, Ind. Eng. Chem. Res., 50 (2011), 12872-12880.
36 K. A. Tacka, D. Szalda, A. K. Souid, J. Goodisman and J. C. Dabrowiak, Experimental and theoretical studies on the pharmacodynamics of cisplatin in jurkat cells, Chem. Res. Toxicol., 17 (2004), 1434-1444.
37 V. Troger, J. L. Fischel and P. Formento et al., Effects of prolonged exposure to cisplatin on cytotoxicity and intracellular drug concentration, Eur. J. Cancer, 28 (1992), 82-86.
38 C. Tse, A. R. Shoemaker and J. Adickes et al., ABT-263: A potent and orally bioavailable Bcl-2 family inhibitor, Cancer Res., 68 (2008), 3421-3428.
39 M. C. Wei, W. X. Zong and E. H. Cheng et al., Proapoptotic BAX and BAK: A requisite gateway to mitochondrial dysfunction and death, Scient, 292 (2001), 727-730.

Go to top