Mathematical Biosciences and Engineering (MBE)

Mathematical model and its fast numerical method for the tumor growth
Pages: 1173 - 1187, Issue 6, December 2015

doi:10.3934/mbe.2015.12.1173      Abstract        References        Full text (1149.1K)           Related Articles

Hyun Geun Lee - Institute of Mathematical Sciences, Ewha Womans University, Seoul 120-750, South Korea (email)
Yangjin Kim - Department of Mathematics, Konkuk University, Seoul 143-701, South Korea (email)
Junseok Kim - Department of Mathematics, Korea University, Seoul 136-713, South Korea (email)

1 N. D. Alikakos, P. W. Bates and X. Chen, Convergence of the Cahn-Hilliard equation to the Hele-Shaw model, Arch. Rational Mech. Anal., 128 (1994), 165-205.       
2 T. Alarcón, H. M. Byrne and P. K. Maini, A cellular automaton model for tumour growth in inhomogeneous environment, J. Theor. Biol., 225 (2003), 257-274.       
3 B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts and P. Walter, Molecular Biology of the Cell, $5^{th}$ edition, Garland Science, New York, 2007.
4 S. M. Allen and J. W. Cahn, A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening, Acta Mater., 27 (1979), 1085-1095.
5 A. R. A. Anderson and M. A. J. Chaplain, Continuous and discrete mathematical models of tumor-induced angiogenesis, Bull. Math. Biol., 60 (1998), 857-899.
6 A. R. A. Anderson and V. Quaranta, Integrative mathematical oncology, Nat. Rev. Cancer, 8 (2008), 227-234.
7 C. Athale, Y. Mansury and T. S. Deisboeck, Simulating the impact of a molecular 'decision-process' on cellular phenotype and multicellular patterns in brain tumors, J. Theor. Biol., 233 (2005), 469-481.
8 M. Athanassenas, Volume-preserving mean curvature flow of rotationally symmetric surfaces, Comment. Math. Helv., 72 (1997), 52-66.       
9 K. Bartha and H. Rieger, Vascular network remodeling via vessel cooption, regression and growth in tumors, J. Theor. Biol., 241 (2006), 903-918.       
10 N. Bellomo, N. K. Li and P. K. Maini, On the foundations of cancer modeling: Selected topics, speculations, and perspective, Math. Models Methods Appl. Sci., 18 (2008), 593-646.       
11 M. Brassel and E. Bretin, A modified phase field approximation for mean curvature flow with conservation of the volume, Math. Meth. Appl. Sci., 34 (2011), 1157-1180.       
12 W. L. Briggs, A Multigrid Tutorial, SIAM, Philadelphia, 1987.       
13 L. Bronsard and B. Stoth, Volume-preserving mean curvature flow as a limit of a nonlocal Ginzburg-Landau equation, SIAM J. Math. Anal., 28 (1997), 769-807.       
14 H. M. Byrne, A weakly nonlinear analysis of a model of avascular solid tumour growth, J. Math. Biol., 39 (1999), 59-89.       
15 H. M. Byrne, T. Alarcon, M. R. Owen, S. D. Webb and P. K. Maini, Modelling aspects of cancer dynamics: A review, Phil. Trans. R. Soc. A, 364 (2006), 1563-1578.       
16 H. M. Byrne and M. A. J. Chaplain, Growth of nonnecrotic tumors in the presence and absence of inhibitors, Math. Biosci., 130 (1995), 151-181.
17 H. M. Byrne and M. A. J. Chaplain, Growth of necrotic tumors in the presence and absence of inhibitors, Math. Biosci., 135 (1996), 187-216.
18 H. M. Byrne and M. A. J. Chaplain, Modelling the role of cell-cell adhesion in the growth and development of carcinomas, Math. Comput. Model., 24 (1996), 1-17.
19 H. M. Byrne and P. Matthews, Asymmetric growth of models of avascular solid tumours: exploiting symmetries, Math. Med. Biol., 19 (2002), 1-29.
20 J. W. Cahn, C. M. Elliott and A. Novick-Cohen, The Cahn-Hilliard equation with a concentration dependent mobility: motion by minus the Laplacian of the mean curvature, Eur. J. Appl. Math., 7 (1996), 287-301.       
21 J. W. Cahn and J. E. Hilliard, Free energy of a nonuniform system. I. Interfacial free energy, J. Chem. Phys., 28 (1958), 258-267.
22 E. A. Carlen, M. C. Carvalho and E. Orlandi, Approximate solutions of the Cahn-Hilliard equation via corrections to the Mullins-Sekerka motion, Arch. Rational Mech. Anal., 178 (2005), 1-55.       
23 X. Chen, The Hele-Shaw problem and area-preserving curve-shortening motions, Arch. Rational Mech. Anal., 123 (1993), 117-151.       
24 Y. Chen, S. M. Wise, V. B. Shenoy and J. S. Lowengrub, A stable scheme for a nonlinear, multiphase tumor growth model with an elastic membrane, Int. J. Numer. Meth. Biomed. Engng., 30 (2014), 726-754.       
25 V. Cristini, H. B. Frieboes, X. Li, J. S. Lowengrub, P. Macklin, S. Sanga, S. M. Wise and X. Zheng, Nonlinear modeling and simulation of tumor growth, in Selected Topics in Cancer Modeling: Genesis, Evolution, Immune Competition, and Therapy (eds. N. Bellomo, M. Chaplain and E. de Angelis), Birkhäuser, (2008), 113-181.       
26 V. Cristini and J. Lowengrub, Multiscale Modeling of Cancer: An Integrated Experimental and Mathematical Modeling Approach, Cambridge University Press, Cambridge, 2010.
27 V. Cristini, J. Lowengrub and Q. Nie, Nonlinear simulation of tumor growth, J. Math. Biol., 46 (2003), 191-224.       
28 S. Dai and Q. Du, Motion of interfaces governed by the Cahn-Hilliard equation with highly disparate diffusion mobility, SIAM J. Appl. Math., 72 (2012), 1818-1841.       
29 T. S. Deisboeck, L. Zhang, J. Yoon and J. Costa, In silico cancer modeling: Is it ready for prime time?, Nat. Clin. Pract. Oncol., 6 (2009), 34-42.
30 S. Dormann and A. Deutsch, Modeling of self-organized avascular tumor growth with a hybrid cellular automaton, In Silico Biol., 2 (2002), 393-406.
31 D. Drasdo, S. Hohme and M. Block, On the role of physics in the growth and pattern formation of multi-cellular systems: what can we learn from individual-cell based models?, J. Stat. Phys., 128 (2007), 287-345.       
32 J. Escher, U. F. Mayer and G. Simonett, The surface diffusion flow for immersed hypersurfaces, SIAM J. Math. Anal., 29 (1998), 1419-1433.       
33 J. Escher and G. Simonett, Classical solutions for Hele-Shaw models with surface tension, Adv. Differ. Equ., 2 (1997), 619-642.       
34 A. Fasano, A. Bertuzzi and A. Gandolfi, Mathematical modelling of tumour growth and treatment, in Complex Systems in Biomedicine (eds. A. Quarteroni, L. Formaggia and A. Veneziani), Springer, (2006), 71-108.       
35 H. B. Frieboes, F. Jin, Y.-L. Chuang, S. M. Wise, J. S. Lowengrub and V. Cristini, Three-dimensional multispecies nonlinear tumor growth-II: tumor invasion and angiogenesis, J. Theor. Biol., 264 (2010), 1254-1278.       
36 A. Friedman, Mathematical analysis and challenges arising from models of tumor growth, Math. Models Methods Appl. Sci., 17 (2007), 1751-1772.       
37 P. Gerlee and A. R. A. Anderson, Stability analysis of a hybrid cellular automaton model of cell colony growth, Phys. Rev. E, 75 (2007), 051911.
38 L. Graziano and L. Preziosi, Mechanics in tumor growth, in Modeling of Biological Materials (eds. F. Mollica, L. Preziosi and K.R. Rajagopal), Birkhäuser, (2007), 263-321.       
39 H. P. Greenspan, On the growth and stability of cell cultures and solid tumors, J. Theor. Biol., 56 (1976), 229-242.       
40 H. L. P. Harpold, E. C. Alvord and K. R. Swanson, The evolution of mathematical modeling of glioma proliferation and invasion, J. Neuropath. Exp. Neur., 66 (2007), 1-9.
41 H. Hatzikirou, A. Deutsch, C. Schaller, M. Simon and K. Swanson, Mathematical modelling of glioblastoma tumour development: A review, Math. Models Methods Appl. Sci., 15 (2005), 1779-1794.       
42 G. Huisken, The volume preserving mean curvature flow, J. Reine Angew. Math., 382 (1987), 35-48.       
43 Y. Jiang, J. Pjesivac-Grbovic, C. Cantrell and J. P. Freyer, A multiscale model for avascular tumor growth, Biophys. J., 89 (2005), 3884-3894.
44 A. R. Kansal, S. Torquato, G. R. Harsh IV, E. A. Chiocca and T. S. Deisboeck, Simulated brain tumor growth dynamics using a three-dimensional cellular automaton, J. Theor. Biol., 203 (2000), 367-382.
45 J. Kim, S. Lee and Y. Choi, A conservative Allen-Cahn equation with a space-time dependent Lagrange multiplier, Int. J. Eng. Sci., 84 (2014), 11-17.       
46 D.-S. Lee, H. Rieger and K. Bartha, Flow correlated percolation during vascular remodeling in growing tumors, Phys. Rev. Lett., 96 (2006), 058104.
47 I. M. M. van Leeuwen, C. M. Edwards, M. Ilyas and H. M. Byrne, Towards a multiscale model of colorectal cancer, World J. Gastroentero., 13 (2007), 1399-1407.
48 X. Li, V. Cristini, Q. Nie and J. S. Lowengrub, Nonlinear three-dimensional simulation of solid tumor growth, Discrete Cont. Dyn-B, 7 (2007), 581-604.       
49 J. S. Lowengrub, H. B. Frieboes, F. Jin, Y.-L. Chuang, X. Li, P. Macklin, S. M. Wise and V. Cristini, Nonlinear modelling of cancer: Bridging the gap between cells and tumours, Nonlinearity, 23 (2010), R1-R91.       
50 Y. Mansury, M. Kimura, J. Lobo and T. S. Deisboeck, Emerging patterns in tumor systems: Simulating the dynamics of multicellular clusters with an agent-based spatial agglomeration model, J. Theor. Biol., 219 (2002), 343-370.       
51 U. F. Mayer and G. Simonett, Self-intersections for the surface diffusion and the volume-preserving mean curvature flow, Differ. Integral Equ., 13 (2000), 1189-1199.       
52 J. D. Nagy, The ecology and evolutionary biology of cancer: A review of mathematical models of necrosis and tumor cell diversity, Math. Biosci. Eng., 2 (2005), 381-418.       
53 R. L. Pego, Front migration in the nonlinear Cahn-Hilliard equation, Proc. R. Soc. Lond. A, 422 (1989), 261-278.       
54 V. Quaranta, A. M. Weaver, P. T. Cummings and A. R. A. Anderson, Mathematical modeling of cancer: The future of prognosis and treatment, Clin. Chim. Acta, 357 (2005), 173-179.
55 B. Ribba, T. Alarcón, P. K. Maini and Z. Agur, The use of hybrid cellular automaton models for improving cancer therapy, in Cellular Automata (eds. P.M.A. Sloot, B. Chopard and A.G. Hoekstra), Springer, 3305 (2004), 444-453.
56 T. Roose, S. J. Chapman and P. K. Maini, Mathematical models of avascular tumor growth, SIAM Rev., 49 (2007), 179-208.       
57 J. Rubinstein and P. Sternberg, Nonlocal reaction-diffusion equations and nucleation, IMA J. Appl. Math., 48 (1992), 249-264.       
58 S. J. Ruuth and B. T. R. Wetton, A simple scheme for volume-preserving motion by mean curvature, J. Sci. Comput., 19 (2003), 373-384.       
59 S. Sanga, H. B. Frieboes, X. Zheng, R. Gatenby, E. L. Bearer and V. Cristini, Predictive oncology: A review of multidisciplinary, multiscale in silico modeling linking phenotype, morphology and growth, Neurolmage, 37 (2007), S120-S134.
60 A. Stuart and A. R. Humphries, Dynamical System and Numerical Analysis, Cambridge University Press, Cambridge, 1996.       
61 U. Trottenberg, C. Oosterlee and A. Schüller, Multigrid, Academic Press, London, 2001.       
62 S. Turner and J. A. Sherratt, Intercellular adhesion and cancer invasion: A discrete simulation using the extended Potts model, J. Theor. Biol., 216 (2002), 85-100.       
63 S. M. Wise, J. S. Lowengrub and V. Cristini, An adaptive multigrid algorithm for simulating solid tumor growth using mixture models, Math. Comput. Model., 53 (2011), 1-20.       
64 S. M. Wise, J. S. Lowengrub, H. B. Frieboes and V. Cristini, Three-dimensional multispecies nonlinear tumor growth-I: Model and numerical method, J. Theor. Biol., 253 (2008), 524-543.       
65 X. Zheng, S. M. Wise and V. Cristini, Nonlinear simulation of tumor necrosis, neo-vascularization and tissue invasion via an adaptive finite-element/level-set method, Bull. Math. Biol., 67 (2005), 211-259.       

Go to top