Twocomponent higher order CamassaHolm systems with fractional inertia operator: A geometric approach
Pages: 281  293,
Issue 3,
September
2015
doi:10.3934/jgm.2015.7.281 Abstract
References
Full text (400.4K)
Related Articles
Joachim Escher  Institute for Applied Mathematics, University of Hanover, D30167 Hanover, Germany (email)
Tony Lyons  School of Mathematical Sciences, University College Cork, Cork, Ireland (email)
1 
V. I. Arnold, Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications à l'hydrodynamique des fluides parfaits, Ann. Inst. Fourier (Grenoble), 16 (1966), 319361. 

2 
R. Camassa and D. D. Holm, An integrable shallow water equation with peaked solitons, Phys. Rev. Lett., 71 (1993), 16611664. 

3 
R. Camassa, D. D. Holm and J. Hyman, A new integrable shallow water equation, Adv. Appl. Mech., 31 (1994), 133. 

4 
A. Constantin, Existence of permanent and breaking waves for a shallow water equation: a geometric approach, Ann. Inst. Fourier (Grenoble), 50 (2000), 321362. 

5 
A. Constantin, Nonlinear Water Waves with Applications to WaveCurrent Interactions and Tsunamis, Volume 81 of CBMSNSF Regional Conference Series in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2011. 

6 
A. Constantin and J. Escher, Wave breaking for nonlinear nonlocal shallow water equations, Acta Math., 181 (1998), 229243. 

7 
A. Constantin and J. Escher, Wellposedness, global existence and blowup phenomena for a periodic quasilinear hyperbolic equation, Comm. Pure Appl. Math., 51 (1998), 475504. 

8 
A. Constantin and R. I. Ivanov, On an integrable twocomponent CamassaHolm shallow water system, Phys. Lett. A, 372 (2008), 71297132. 

9 
A. Constantin and B. Kolev, On the geometric approach to the motion of inertial mechanical systems, J. Phys. A, 35 (2002), R51R79. 

10 
A.Constantin and B. Kolev, Geodesic flow on the diffeomorphism group of the circle, Comment. Math. Helv., 78 (2003), 787804. 

11 
A. Constantin and B. Kolev, $H^k$ metrics on the diffeomorphism group of the circle, J. Nonlin. Math. Phys., 10 (2003), 424430. 

12 
A. Degasperis and M. Procesi, Asymptotic integrability, in Symmetry and perturbation theory (Rome, 1998), World Sci. Publ., River Edge, NJ, (1999), 2337. 

13 
D. G. Ebin and J. E. Marsden, Groups of diffeomorphisms and the motion of an incompressible fluid, Ann. Math., 92 (1970), 102163. 

14 
J. Escher, Nonmetric twocomponent Euler equations on the circle, Monatsh. Math., 167 (2012), 449459. 

15 
J. Escher, D. Henry, B. Kolev and T. Lyons, Twocomponent equations modelling water waves with constant vorticity, Ann. Mat. Pur. App., (2014). To appear. 

16 
J. Escher and B. Kolev, The DegasperisProcesi equation as a nonmetric Euler equation, Math. Z., 269 (2011), 11371153. 

17 
J. Escher and B. Kolev, Geodesic completeness for Sobolev $H^s$metrics on the diffeomorphism group of the circle, J. Evol. Equ., 6 (2014), 335372. To appear. Available at http://arxiv.org/abs/1308.3570. 

18 
J. Escher and B. Kolev, Rightinvariant Sobolev metrics of fractional order on the diffeomorphism group of the circle, J. Geom. Mech., 14 (2014), 949968. To appear. Available at http://arxiv.org/abs/1202.5122. 

19 
J. Escer and Z. Yin, Wellposedness, blowup phenomena and global solutions for the $b$equation, J. Reine Angew. Math., 624 (2008), 5180. 

20 
D. Henry, Compactly supported solutions of a family of nonlinear differential equations, Dyn. Contin. Discrete Impuls Syst. Ser. A Math. Anal., 15 (2008), 145150. 

21 
D. Henry, Infinite propagation speed for a two component CamassaHolm equation, Discrete Dyn. Syst. Ser. B, 12 (2009), 597606. 

22 
D. Henry, Persistence properties for a family of nonlinear partial differential equations, Nonlin. Anal., 70 (2009), 15651573. 

23 
R. Ivanov, Twocomponent integrable systems modelling shallow water waves: the constant vorticity case, Wave Motion, 46 (2009), 389396. 

24 
R. S. Johnson, CamassaHolm, Kortewegde Vries and related models for water waves, J. Fluid Mech., 455 (2002), 6382. 

25 
R. S. Johnson, The CamassaHolm equation for water waves moving over a shear flow, Fluid Dynam. Res., 33 (2003), 97111. 

26 
B. Kolev, Some geometric investigations on the DegasperisProcesi shallow water equation, Wave Motion, 46 (2009), 412419. 

27 
G. Misiołek, Classical solutions of the periodic CamassaHolm equation, Geom. Funct. Anal., 12 (2002), 10801104. 

Go to top
