`a`
The Journal of Geometric Mechanics (JGM)
 

Hypersymplectic structures on Courant algebroids
Pages: 255 - 280, Issue 3, September 2015

doi:10.3934/jgm.2015.7.255      Abstract        References        Full text (335.7K)           Related Articles

Paulo Antunes - CMUC, Department of Mathematics, University of Coimbra, 3001-501 Coimbra, Portugal (email)
Joana M. Nunes da Costa - CMUC, Department of Mathematics, University of Coimbra, 3001-501 Coimbra, Portugal (email)

1 P. Antunes, Crochets de Poisson Gradués et Applications: Structures Compatibles et Généralisations des Structures Hyperkählériennes, Ph.D thesis, École Polytechnique, Palaiseau, France, 2010.
2 P. Antunes, C. Laurent-Gengoux and J. M. Nunes da Costa, Hierarchies and compatibility on Courant algebroids, Pac. J. Math., 261 (2013), 1-32.       
3 P. Antunes and J. M. Nunes da Costa, Hyperstructures on Lie algebroids, Rev. in Math. Phys., 25 (2013), 1343003, 19pp.       
4 P. Antunes and J. M. Nunes da Costa, Induced hypersymplectic and hyperkähler structures on the dual of a Lie algebroid, Int. J. Geom. Meth. Mod. Phys., 11 (2014), 1460030 (9 pages).       
5 P. Antunes and J. M. Nunes da Costa, Hyperstructures with torsion on Lie algebroids, preprint, arXiv:1501.00887.
6 H. Bursztyn, G. Cavalcanti and M. Gualtieri, Generalized Kähler and hyper-Kähler quotients, in Poisson geometry in mathematics and physics, Contemp. Math., Amer. Math. Soc., Providence, RI, 450 (2008), 61-77.       
7 P. S. Howe and G. Papadopoulos, Twistor spaces for hyper-Kähler manifolds with torsion, Phys. Lett. B, 379 (1996), 80-86.       
8 J. Grabowski, Courant-Nijenhuis tensors and generalized geometries, in Groups, geometry and physics, Monogr. Real Acad. Ci. Exact. Fís.-Quím. Nat. Zaragoza, 29 (2006), 101-112.       
9 N. Hitchin, Generalized Calabi-Yau manifolds, Q. J. Math., 54 (2003), 281-308.       
10 Y. Kosmann-Schwarzbach, Quasi, twisted, and all that ... in Poisson geometry and Lie algebroid theory, in The Breadth of symplectic and Poisson geometry, J.E. Marsden and T. Ratiu, eds., Progr. Math., 232, Birkhäuser, Boston, MA, 2005, pp. 363-389.       
11 Y. Kosmann-Schwarzbach, Poisson and symplectic functions in Lie algebroid theory, in Higher Structures in Geometry and Physics, A. Cattaneo, A. Giaquinto and Ping Xu, eds., Progr. Math. 287, Birkhäuser, Boston, 2011, pp. 243-268.       
12 D. Roytenberg, On the structure of graded symplectic supermanifolds and Courant algebroids, in Quantization, Poisson brackets and beyond, T. Voronov, ed., Contemp. Math., 315, Amer. Math. Soc., Providence, RI, 2002, pp. 169-185.       
13 D. Roytenberg, Quasi-Lie bialgebroids and twisted Poisson manifolds, Lett. Math. Phys., 61 (2002), 123-137.       
14 M. Stiénon, Hypercomplex structures on Courant algebroids, C. R. Acad. Sci. Paris, 347 (2009), 545-550.       
15 T. Voronov, Graded manifolds and Drinfeld doubles for Lie bialgebroids, in Quantization, Poisson brackets and beyond, T. Voronov, ed., Contemp. Math. 315, Amer. Math. Soc., Providence, RI, 2002, pp. 131-168.       
16 P. Xu, Hyper-Lie Poisson structures, Ann. Sci. École Norm. Sup., 30 (1997), 279-302.       

Go to top