`a`
Advances in Mathematics of Communications (AMC)
 

High-rate space-time block codes from twisted Laurent series rings
Pages: 255 - 275, Issue 3, August 2015

doi:10.3934/amc.2015.9.255      Abstract        References        Full text (508.1K)           Related Articles

Hassan Khodaiemehr - Department of Mathematics and Computer Science, Amirkabir University of Technology (Tehran Polytechnic), 424 Hafez Ave., Tehran 15914, Iran (email)
Dariush Kiani - Department of Mathematics and Computer Science, Amirkabir University of Technology (Tehran Polytechnic), 424 Hafez Ave., Tehran 15914, Iran (email)

1 P. M. Cohn, Introduction to Ring Theory, Springer-Verlag, London, 2000.       
2 M. Daberkow, C. Fieker, J. Klüners, M. Pohst, K. Roegner and K. Wildanger, KANT V4, J. Symbolic Comp., 24 (1997), 267-283.       
3 M. O. Damen, K. Abed-Merriam and J. C. Belfiore, Generalized sphere decoder for asymmetrical space-time communication architecture, IEEE Electron. Lett., 36 (2000), 16-20.
4 M. O. Damen, A. Chkeif and J. C. Belfiore, Lattice code decoder for space-time codes, IEEE Commun. Lett., 4 (2000), 161-163.
5 M. O. Damen, A. Tewfik and J. C. Belfiore, A construction of a space-time code based on number theory, IEEE Trans. Inf. Theory, 48 (2002), 753-760.       
6 P. K. Draxl, Skew Fields, Cambridge Univ. Press, Cambridge, 1983.       
7 U. Fincke and M. Pohst, Improved methods for calculating vectors of short length in a lattice, including a complexity analysis, Math. Comput., 44 (1985), 463-471.       
8 G. J. Foschini, Layered space-time architecture for wireless communications in a fading environment when using multi-element antennas, Bell Labs. Tech. J., 1 (1996), 41-59.
9 G. J. Foschini and M. Gans, On the limits of wireless communication in a fading environment when using multiple antennas, Wireless Personal Commun., 6 (1998), 311-335.
10 J. C. Guey, M. P. Fitz, M. R. Bell and W. Y. Kuo, Signal design for transmitter diversity wireless communication systems over Rayleigh fading channels, IEEE Trans. Commun., 47 (1999), 527-537.
11 T. Hanke, An explicit example of a noncrossed product division algebra, Math. Nachr., 271 (2004), 51-68.       
12 T. Hanke, A twisted Laurent series ring that is a noncrossed product, Israel J. Math., 150 (2005), 199-204.       
13 B. Hassibi and B. Hochwald, High-rate codes that are linear in space and time, IEEE Trans. Inf. Theory, 48 (2002), 1804-1824.       
14 B. Hassibi and H. Vikalo, On the expected complexity of sphere decoding, in 35th Asilomar Conf. Sign. Syst. Comp., Pacific Grove, 2001, 1051-1055.
15 I. N. Herstein, Non-Commutative Rings, Math. Assoc. Amer., Washington, 1968.
16 B. M. Hochwald and S. T. Brink, Achieving near-capacity on a multiple-antenna channel, IEEE Trans. Commun., 51 (2003), 389-399.
17 T. W. Hungerford, Algebra, 3 edition, Springer-Verlag, Washington, 1980.
18 N. Jacobson, Basic Algebra I, 2nd edition, Freeman, New York, 1985.       
19 T. Y. Lam, A First Course in Noncommutative Rings, Springer-Verlag, New York, 1991.       
20 P. J. McCarthy, Algebraic Extensions of Filelds, Dover Publications Inc., New York.       
21 J. Neukirch, Algebraische Zahlentheorie, Springer-Verlag, Berlin, 1992.
22 R. S. Pierce, Associative Algebras, Springer-Verlag, Berlin, 1982.       
23 B. A. Sethuraman and B. S. Rajan, An algebraic description of orthogonal designs and the uniqueness of the Alamouti code, in Proc. IEEE GLOBECOM (2002), Taipai, 2002, 1088-1092.
24 B. A. Sethuraman and B. S. Rajan, Optimal STBC over PSK signal sets from cyclotomic field extensions, in Proc. IEEE Int. Conf. Commun. (ICC 2002), New York, 2002, 1783-1787.
25 B. A. Sethuraman and B. S. Rajan, STBC from field extensions of the rational field, in Proc. IEEE Int. Symp. Inf. Theory (ISIT 2002), Lausanne, 2002, p. 274.
26 B. A. Sethuraman, B. S. Rajan and V. Shashidhar, Full-diversity, high-rate space-time block codes from division algebras, IEEE Trans. Inf. Theory, 49 (2003), 2596-2616.       
27 V. Shashidhar, High-Rate and Information-Lossless Space-Time Block Codes from Crossed-Product Algebras, Ph.D thesis, Indian Institute of Science, Bangalore, 2004.
28 V. Shashidhar, B. S. Rajan and B. A. Sethuraman, STBCs using capacity achieving designs from cyclic division Algebras, in Proc. IEEE GLOBECOM (2003), San Francisco, 2003, 1957-1962.
29 V. Shashidhar, B. S. Rajan and B. A. Sethuraman, Information lossless STBCs from crossed-product algebras, IEEE Trans. Inf. Theory, 52 (2006), 3913-3935.       
30 V. Shashidhar, K. Subrahmanyam, R. Chandrasekharan, B. S. Rajan and B. A. Sethuraman, High-rate, full-diversity STBCs from field extensions, in Proc. IEEE Int. Symp. Inf. Theory (ISIT 2003), Yokohama, 2003, p. 126.
31 V. Tarokh, N. Seshadri and A. R. Calderbank, Space-time codes for high data rate wireless communication: Performance criterion and code construction, IEEE Trans. Inf. Theory, 44 (1998), 744-765.       
32 E. Telatar, Capacity of multi-antenna Gaussian channels, Europ. Trans. Telecommun., 10 (1999), 585-595.
33 J. P. Tignol, Generalized crossed products, in Séminaire Mathématique (nouvelle série), UniversitéCatholique de Louvain, Belgium, 1987.
34 E. Viterbo and J. Boutros, A universal lattice code decoder for fading channel, IEEE Trans. Inf. Theory, 45 (1999), 1639-1642.       

Go to top