`a`
Advances in Mathematics of Communications (AMC)
 

On weighted minihypers in finite projective spaces of square order
Pages: 291 - 309, Issue 3, August 2015

doi:10.3934/amc.2015.9.291      Abstract        References        Full text (418.6K)           Related Articles

Linda Beukemann - Technische Hochschule Mittelhessen, Fachbereich MND, Campus Friedberg, Wilhelm-Leuschner-Straße 13, D-61169 Friedberg, Germany (email)
Klaus Metsch - Justus-Liebig-Universität, Mathematisches Institut, Arndtstraβe 2, D-35392 Giessen, Germany (email)
Leo Storme - Department of Mathematics, Ghent University, Krijgslaan 281 - S22, 9000 Ghent, Belgium (email)

1 A. A. Bruen, Intersection of Baer subgeometries, Arch. Math., 39 (1982), 285-288.       
2 G. Donati and N. Durante, On the intersection of two subgeometries of $\PG(n, q)$, Electron. Notes Discrete Math., 26 (2006), 51-53.       
3 S. Ferret and L. Storme, Minihypers and linear codes meeting the Griesmer bound: Improvements to results of Hamada, Helleseth and Maekawa, Des. Codes Cryptogr., 25 (2002), 143-162.       
4 P. Govaerts and L. Storme, On a particular class of minihypers and its applications. II. Improvements for $q$ square, J. Combin. Theory Ser. A, 97 (2002), 369-393.       
5 P. Govaerts and L. Storme, On a particular class of minihypers and its applications. I. The result for general $q$, Des. Codes Cryptogr., 28 (2003), 51-63.       
6 J. H. Griesmer, A bound for error-correcting codes, IBM J. Res. Develop., 4 (1960), 532-542.       
7 N. Hamada, A characterization of some $[n,k,d;q]$-codes meeting the Griesmer bound using minihypers in a finite projective geometry, Discrete Math., 116 (1993), 229-268.       
8 N. Hamada and T. Helleseth, A characterization of some $q$-ary codes $(q>(h-1)^2, h\geq 3)$ meeting the Griesmer bound, Math. Japonica, 38 (1993), 925-940.       
9 N. Hamada and T. Helleseth, Codes and minihypers, in Optimal Codes and Related Topics, Bulgaria, 2001, 79-84.
10 G. Solomon and J. J. Stiffler, Algebraically punctured cyclic codes, Inform. Control, 8 (1965), 170-179.       
11 L. Storme, Weighted ${\delta(q+1),\delta;k-1,q}$-minihypers, Discrete Math., 308 (2008), 339-354.       
12 M. Sved, Baer subspaces in the $n$-dimensional projective space, in Combinatorial Mathematics X, Springer, 1983, 375-391.       

Go to top