`a`
Discrete and Continuous Dynamical Systems - Series S (DCDS-S)
 

Stationary solutions for some shadow system of the Keller-Segel model with logistic growth
Pages: 1023 - 1034, Issue 5, October 2015

doi:10.3934/dcdss.2015.8.1023      Abstract        References        Full text (627.7K)           Related Articles

Tohru Tsujikawa - Faculty of Engineering, University of Miyazaki, Miyazaki, 889-2192, Japan (email)
Kousuke Kuto - Department of Communication Engineering and Informatics, The University of Electro-Communications, Tokyo, 182-8585, Japan (email)
Yasuhito Miyamoto - Graduate School of Mathematical Sciences, The University of Tokyo, Tokyo, 153-8914, Japan (email)
Hirofumi Izuhara - Faculty of Engineering, University of Miyazaki, Miyazaki, 889-2192, Japan (email)

1 M. Aida, T. Tsujikawa, M. Efendiev, A. Yagi and M. Mimura, Lower estimate of the attractor dimension for a chemotaxis growth system, J. London Math. Soc., 74 (2006), 453-474.       
2 W. Alt and D. A. Lauffenburger, Transient behavior of a chemotaxis system modelling certain types of tissue inflammation, J. Math. Biol., 24 (1987), 691-722.       
3 P. Biler, Local and global solvability of some parabolic system modelling chemotaxis, Adv. Mathe. Sci. and Appl., 8 (1998), 715-743.       
4 N. Chafee and E. F. Infante, A bifurcation problem for a nonlinear partial differential equation of parabolic type, Appl. Anal., 4 (1974), 17-37.       
5 E. J. Doedel, R. C. Paffenroth, A. R. Champneys, T. F. Fairgrieve, Y. A. Kuznetsov, B. E. Oldeman, B. Sandstede and X. Wang, AUTO 2000, Continuation and bifurcation software for ordinary differential equations.
6 S.-I. Ei, H. Izuhara and M. Mimura, Spatio-temporal oscillations in the Keller-Segel system with logistic growth, Physica D, 277 (2014), 1-21.       
7 C. Gai, Q. Wang and J. Yan, Qualitative analysis of stationary Keller-Segel chemotaxis models with logistic growth, preprint, arXiv:1312.0258.
8 D. D. Hai and A. Yagi, Numerical computations and pattern formation for chemotaxis-growth model, Sci. Math. Jpn, 70 (2009), 205-211.       
9 Y. Kabeya and W.-M. Ni, Stationary Keller-Segel model with the linear sensitivity, RIMS Kokyuroku, 1025 (1998), 44-65.       
10 E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theor. Biol., 26 (1970), 399-415.
11 N. Kurata, K. Kuto, K. Osaki, T. Tsujikawa and T. Sakurai, Bifurcation phenomena of pattern solution to Mimura-Tsujikawa model in one dimension, Math. Sci. Appl., 29 (2008), 265-278.       
12 K. Kuto, K. Osaki, T. Sakurai and T. Tsujikawa, Spatial pattern in a chemotaxis-diffusion-growth model, Physica D, 241 (2012), 1629-1639.       
13 K. Kuto and T. Tsujikawa, Stationary patterns for an adsorbate-induced phase transition model: II. Shadow system, Nonlinearity, 26 (2013), 1313-1343.       
14 K. Kuto and T. Tsujikawa, Bifurcation structure of steady-states for bistable equations with nonlocal constraint, Discrete Continuous Dynam. Systems, Supplement volume, (2013), 455-464.
15 K. Kuto and T. Tsujikawa, Limiting structure of steady-states to the Lotka-Volterra competition model with large diffusion and advection, J. Differential Equations, 258 (2015), 1801-1858.       
16 K. Kuto and T. Tsujikawa, Bifurcation structure of steady-states for generalized Allen-Cahn equations with nonlocal constraint, preprint.
17 D. A. Lauffenburger and C. R. Kennedy, Localized bacterial infection in a chemotaxis-diffusion-growth model, J. Math. Biol., 16 (1983), 141-163.
18 C.-S. Lin, W.-N. Ni and I. Takagi, Large amplitude stationary solutions to a chemotaxis system, J. Differential Equations, 72 (1988), 1-27.       
19 P. K. Maini, M. R. Myerscough, K. H. Winters and J. D. Murray, Bifurcating spatially heterogeneous solutions in a chemotaxis model for biological pattern formation, Bull. Math. Biol., 53 (1991), 701-719.
20 M. Mimura and T. Tsujikawa, Aggregating pattern dynamics in a chemotaxis model including growth, Physica A, 230 (1996), 499-543.
21 K. Osaki, T. Tsujikawa, A. Yagi and M. Mimura, Exponential attractor for a chemotaxis-growth system of equations, Nonlinear Analysis, Theory, Methods and Applications, 51 (2002), 119-144.       
22 K. J. Painter and T. Hillen, Spatio-temporal chaos in a chemotaxis model, Physica D, 240 (2011), 363-375.
23 R. Schaaf, Global behaviour of solution branches for some Neumann problems depending on one or several parameters, J. Reine Angew. Math., 364 (1984), 1-31.       
24 R. Schaaf, Global Solution Branches of Two-Point Boundary Value Problems, Lecture Notes in Mathematics, 1458, Springer-Verlag, Berlin, 1990.       
25 T. Senba and T. Suzuki, Some structures of the solution set for a stationary system of chemotaxis, Adv. Math. Sci. Appl., 10 (2000), 191-224.       
26 J. Shi, Semilinear Neumann boundary value problems on a rectangle, Trans. Amer. Math. Soc., 354 (2002), 3117-3154.       
27 J. I. Tello and M. Winkler, A chemotaxis system with logistic source, Comm. Partial Differential Equations, 32 (2007), 849-877.       
28 T. Tsujikawa, Global structure of the stationary solutions for the limiting system of a chemotaxis-growth model, to appear in RIMS Kokyuroku, 2014.

Go to top