`a`
Kinetic and Related Models (KRM)
 

On the weak coupling limit of quantum many-body dynamics and the quantum Boltzmann equation
Pages: 443 - 465, Issue 3, September 2015

doi:10.3934/krm.2015.8.443      Abstract        References        Full text (441.4K)           Related Articles

Xuwen Chen - Department of Mathematics, University of Rochester, Rochester, NY 14627, United States (email)
Yan Guo - Division of Applied Mathematics, Brown University, Providence, RI 02912, United States (email)

1 D. Benedetto, F. Castella, R. Esposito and M. Pulvirenti, Some considerations on the derivation of the nonlinear quantum boltzmann equation, J. Stat. Phys., 116 (2004), 381-410.       
2 D. Benedetto, F. Castella, R. Esposito and M. Pulvirenti, On the weak-coupling limit for bosons and fermions, Math. Mod. Meth. Appl. Sci., 15 (2005), 1811-1843.       
3 D. Benedetto, F. Castella, R. Esposito and M. Pulvirenti, From the N-body Schroedinger equation to the quantum Boltzmann equation: A term-by-term convergence result in the weak coupling regime, Commun. Math. Phys., 277 (2008), 1-44.       
4 L. Erdös, M. Salmhofer and H. T. Yau, On the quantum Boltzmann equation, J. Stat. Phys., 116 (2004), 367-380.       
5 I. Gallagher, L. Saint-Raymond and B. Texier, From Newton to Boltzmann: Hard Spheres and Short-range Potentials, Zürich Lectures in Advanced Mathematics, European Mathematical Society (EMS), Zürich, 2013.       
6 F. King, BBGKY Hierarchy for Positive Potentials, Ph.D thesis, Univ. California, Berkley, 1975.       
7 O. E. Lanford III, Time Evolution of Large Classical Systems, Lecture Notes in Physics, 38 (1975), 1-111.       
8 E. A. Uehling and G. E. Uhlenbeck, Transport phenomena in Einstein-Bose and Fermi-Dirac gases, Phys. Rev., 43 (1933), 552-561.

Go to top