`a`
Mathematical Biosciences and Engineering (MBE)
 

Order reduction for an RNA virus evolution model
Pages: 1007 - 1016, Issue 5, October 2015

doi:10.3934/mbe.2015.12.1007      Abstract        References        Full text (993.4K)           Related Articles

Andrei Korobeinikov - Centre de Recerca Matemática, Campus de Bellaterra, Edifici C, 08193 Barcelona, Spain (email)
Aleksei Archibasov - Department of Applied Mathematics, Samara State Aerospace University (SSAU), 443086 Samara, 34, Moskovskoye shosse, Russian Federation (email)
Vladimir Sobolev - Department of Technical Cybernetics, Samara State Aerospace University (SSAU), 443086 Samara, 34, Moskovskoye shosse, Russian Federation (email)

1 V. F. Butuzov, N. N. Nefedov, L. Recke and K. R. Schnieder, Global region of attraction of a periodic solution to a singularly perturbed parabolic problem, Applicable Analysis, 91 (2012), 1265-1277.       
2 L. H. Erbe and D. J. Guo, Method of upper and lower solutions for nonlinear integro-differential equations of mixed type in Banach spaces, Applicable Analysis, 52 (1994), 143-154.       
3 Y. Haraguchi and A. Sasaki, Evolutionary pattern of intra-host pathogen antigenic drift: effect of crossreactivity in immune response, Phil. Trans. R. Soc. B, 352 (1997), 11-20.
4 H. K. Khalil, Stability analysis of nonlinear multiparameter singularly perturbed systems, IEEE Trans. Aut. Control, 32 (1987), 260-263.
5 A. Korobeinikov, Global properties of basic virus dynamics models, Bull. Math. Biol., 66 (2004), 879-883.       
6 A. Korobeinikov, Global asymptotic properties of virus dynamics models with dose dependent parasite reproduction and virulence, and nonlinear incidence rate, Math. Med. Biol., 26 (2009), 225-239.
7 A. Korobeinokov, Stability of ecosystem: Global properties of a general prey-predator model, Math. Med. Biol., 26 (2009), 309-321.       
8 A. Korobeinikov and C. Dempsey, A continuous phenotype space model of RNA virus evolution within a host, Math. Biosci. Eng., 11 (2014), 919-927.       
9 X. Lai, Sh. Liu and R. Lin, Rich dynamical behaviors for predator-prey model with weak Allee effect, Applicable Analysis, 89 (2010), 1271-1292.       
10 M. P. Mortell, R. E. O'Malley, A. Pokrovskii and V. A. Sobolev, Singular Perturbation and Hysteresis, SIAM, Philadelphia, 2005.       
11 N. N. Nefedov and A. G. Nikitin, The Cauchy problem for a singularly perturbed integro-differential Fredholm equation, Computational Mathematics and Mathematical Physics, 47 (2007), 629-637.       
12 M. A. Nowak and R. M. May, Virus dynamics: Mathematical principles of Immunology and Virology, Oxford University Press, New York, 2000.       
13 A. Sasaki, Evolution of antigenic drift/switching: Continuously evading pathogens, J. Theor. Biol., 168 (1994), 291-308.
14 A. Sasaki and Y. Haraguchi, Antigenic drift of viruses within a host: A finite site model with demographic stochasticity, J. Mol. Evol, 51 (2000), 245-255.
15 M. A. Stafford, L. Corey, Y. Cao, E. S. Daar, D. D. Ho and A. S. Perlson, Modeling plasma virus concentration during primary HIV infection, J. Theor. Biol., 203 (2000), 285-301.
16 L. S. Tsimring, H. Levine and D. A. Kessler, RNA virus evolution via a fitness-space model, Phys. Rev. Lett., 76 (1996), 4440-4443.
17 C. Vargas-De-León and A. Korobeinikov, Global stability of a population dynamics model with inhibition and negative feedback, Math. Med. Biol., 30 (2013), 65-72.       
18 A. B. Vasilieva, V. F. Butuzov and L. V. Kalachev, The Boundary Function Method for Singular Perturbation Problems, SIAM, Philadelphia, 1995.       
19 D. Wodarz, J. P. Christensen and A. R. Thomsen, The importance of lytic and nonlytic immune responses in viral infections, TRENDS in Immunology, 23 (2002), 194-200.

Go to top