`a`
Mathematical Biosciences and Engineering (MBE)
 

Multi-host transmission dynamics of schistosomiasis and its optimal control
Pages: 983 - 1006, Issue 5, October 2015

doi:10.3934/mbe.2015.12.983      Abstract        References        Full text (653.5K)           Related Articles

Chunxiao Ding - Department of Applied Mathematics, Nanjing University of Science and Technology, Nanjing, 210094, China (email)
Zhipeng Qiu - Department of Applied Mathematics, Nanjing University of Science and Technology, Nanjing, 210094, China (email)
Huaiping Zhu - LAboratory of Mathematical Parallel Systems (LAMPS), Centre for Disease Modeling, Department of Mathematics and Statistics, York University, Toronto, Ontario, M3J 1P3, Canada (email)

1 A. Abdelrazec, S. Lenhart and H. Zhu, Transmission dynamics of West Nile virus in mosquitoes and corvids and non-corvids, Journal of Mathematical Biology, 68 (2014), 1553-1582.       
2 L. J. Abu-Raddad, A. S. Magaret, C. Celum, A. Wald, I. M. Longini Jr, S. G. Self and L. Corey, Genital herpes has played a more important role than any other sexually transmitted infection in driving HIV prevalence in Africa, PloS One, 3 (2008), e2230. http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0002230
3 K. W. Blayneh, A. B. Gumel, S. Lenhart and C. Tim, Backward bifurcation and optimal control in transmission dynamics of West Nile virus, Bulletin of Mathematical Biology, 72 (2010), 1006-1028.       
4 C. Castillo-Chevez and H. R. Thieme, Asymptotically autonomous epidemic models, Mathematical Population Dynamics: Analysis of Heterogeneity, 1 (1995), 33-50. http://www.researchgate.net/publication/221674057_Asymptotically_autonomous_epidemic_models
5 Z. Feng, C. Li and F. A. Milner, Schistosomiasis models with density dependence and age of infection in snail dynamics, Mathematical Biosciences, 177 (2002), 271-286.       
6 Z. Feng, Z. Qiu, Z. Sang, C. Lorenzo and J. Glasser, Modeling the synergy between HSV-2 and HIV and potential impact of HSV-2 therapy, Mathematical Biosciences, 245 (2013), 171-187.       
7 A. Fenton and A. B. Pedersen, Community epidemiology framework for classifying disease threats, Emerging Infectious Diseases, 11 (2005), 1815-1821. http://wwwnc.cdc.gov/eid/article/11/12/05-0306_article
8 W. Fleming and R. Rishel, Deterministic and Stochastic Optimal Control, Springer, 1975. http://cds.cern.ch/record/1611958       
9 D. J. Gray, G. M. Williams, Y. Li and D. P. McManus, Transmission dynamics of Schistosoma japonicum in the lakes and marshlands of China, PLoS One, 3 (2008), e4058. http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0004058
10 J. O. Lloyd-Smith, D. George, K. M. Pepin, V. E. Pitzer, J. R. Pulliam, A. P. Dobson, P. J. Hudson and B. T. Grenfell, Epidemic dynamics at the human-animal interface, Science, 326 (2009), 1362-1367, http://www.sciencemag.org/content/326/5958/1362.short
11 L. S. Pontryagin, Mathematical Theory of Optimal Processes, Interscience Publishers John Wiley and Sons, Inc., New York-London, 1962.       
12 M. Rafikov, L. Bevilacqua and A. P. P. Wyse, Optimal control strategy of malaria vector using genetically modified mosquitoes, Journal of Theoretical Biology, 258 (2009), 418-425. http://www.sciencedirect.com/science/article/pii/S0022519308004190       
13 S. Riley, H. Carabin, P. BĂ©lisle, L. Joseph, V. Tallo, E. Balolong, A. L. Willingham III, T. J. Fernandez Jr., R. O. Gonzales, R. Olveda and S. T. McGarvey, Multi-host transmission dynamics of Schistosoma japonicum in Samar Province, the Philippines, PLoS Medicine, 5 (2008), e18. http://dx.plos.org/10.1371/journal.pmed.0050018
14 J. W. Rudge, J. P. Webster, D. B. Lu, T. P. Wang, G. R. Fang and M. G. Basanez, Identifying host species driving transmission of schistosomiasis japonica, a multihost parasite system, in China, Proceedings of the National Academy of Sciences, 110 (2013), 11457-11462. http://www.pnas.org/content/110/28/11457.short
15 C. Shan, X. Zhou and H. Zhu, The Dynamics of Growing Islets and Transmission of Schistosomiasis Japonica in the Yangtze River, Bulletin of Mathematical Biology, 76 (2014), 1194-1217.       
16 H. L. Smith, Cooperative systems of differential equations with concave nonlinearities, Nonlinear Analysis: Theory, Methods and Applications, 10 (1986), 1037-1052. http://www.sciencedirect.com/science/article/pii/0362546X86900878
17 H. L. Smith and P. Waltman, Perturbation of a globally stable steady state, Proceedings of the American Mathematical Society, 127 (1999), 447-453.       
18 P. Van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Mathematical Biosciences, 180 (2002), 29-48.       
19 W. Wang and X. Q. Zhao, An epidemic model in a patchy environment, Mathematical Biosciences, 190 (2004), 97-112.       
20 World Health Organization, http://www.who.int/features/factfiles/schistosomiasis/en/.
21 M. J. Woolhouse, On the application of mathematical models of schistosome transmission dynamics. II. Control, Acta Tropica, 50 (1992), 189-204. http://www.sciencedirect.com/science/article/pii/0001706X9290076A
22 J. Xiang, H. Chen and H. Ishikawa, A mathematical model for the transmission of Schistosoma japonicum in consideration of seasonal water level fluctuations of Poyang Lake in Jiangxi, China, Parasitology International, 62 (2013), 118-126. http://www.sciencedirect.com/science/article/pii/S1383576912001341
23 P. Zhang, Z. Feng and F. Milner, A schistosomiasis model with an age-structure in human hosts and its application to treatment strategies, Mathematical Biosciences, 205 (2007), 83-107.       
24 R. Zhao and F. A. Milner, A mathematical model of Schistosoma mansoni in Biomphalaria glabrata with control strategies, Bulletin of Mathematical Biology, 70 (2008), 1886-1905.       
25 Y. B. Zhou, S. Liang and Q. W. Jiang, Factors impacting on progress towards elimination of transmission of schistosomiasis japonica in China, Parasit Vectors, 5 (2012), 257-275. http://www.biomedcentral.com/content/pdf/1756-3305-5-275.pdf

Go to top