`a`
Journal of Dynamics and Games (JDG)
 

Hamiltonian evolutionary games
Pages: 33 - 49, Issue 1, January 2015

doi:10.3934/jdg.2015.2.33      Abstract        References        Full text (690.7K)           Related Articles

Hassan Najafi Alishah - Departamento de Matemática and CAMGSD, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisboa, Portugal (email)
Pedro Duarte - Departamento de Matemática and CMAF, Faculdade de Ciências,Universidade de Lisboa, Campo Grande, Edi ficio C6, Piso 2, 1749-016 Lisboa, Portugal (email)

1 E. Akin and V. Losert, Evolutionary dynamics of zero-sum games, J. Math. Biol., 20 (1984), 231-258.       
2 P. Duarte, R. L. Fernandes and W. M. Oliva, Dynamics of the attractor in the Lotka-Volterra equations, J. Differential Equations, 149 (1998), 143-189.       
3 J.-P. Dufour and N. T. Zung, Poisson Structures and Their Normal Forms, Progress in Mathematics, 242, Birkhäuser Verlag, Basel, 2005.       
4 I. Eshel and E. Akin, Coevolutionary instability and mixed Nash solutions, J. Math. Biol., 18 (1983), 123-133.       
5 R. L. Fernandes, J.-P. Oretga and T. S. Ratiu, The momentum map in Poisson geometry, Amer. J. Math., 131 (2009), 1261-1310.       
6 J. Hofbauer, Evolutionary dynamics for bimatrix games: A Hamiltonian system?, J. Math. Biol., 34 (1996), 675-688.       
7 J. Hofbauer, On the occurrence of limit cycles in the Volterra-Lotka equation, Nonlinear Anal., 5 (1981), 1003-1007.       
8 J. Hofbauer and K. Sigmund, Evolutionary games and population dynamics, Cambridge University Press, Cambridge, 1998.       
9 J. T. Howson, Jr., Equilibria of polymatrix games, Management Sci., 18 (1971/72), 312-318.       
10 J. Maynard Smith, Evolution and the Theory of Games, Cambridge University Press, 1982.
11 J. Nash, Non-cooperative games, Ann. of Math. (2), 54 (1951), 286-295.       
12 G. Palm, Evolutionary stable strategies and game dynamics for $n$-person games, J. Math. Biol., 19 (1984), 329-334.       
13 A. M. Perelomov, Integrable Systems of Classical Mechanics and Lie algebras. Vol. I, Birkhäuser Verlag, Basel, 1990.       
14 M. Plank, Bi-Hamiltonian systems and Lotka-Volterra equations: A three-dimensional classification, Nonlinearity, 9 (1996), 887-896.       
15 M. Plank, Hamiltonian structures for the $n$-dimensional Lotka-Volterra equations, J. Math. Phys., 36 (1995), 3520-3534.       
16 M. Plank, Some qualitative differences between the replicator dynamics of two player and $n$ player games, Nonlinear Anal., 30 (1997), 1411-1417.       
17 R. Redheffer, A new class of Volterra differential equations for which the solutions are globally asymptotically stable, J. Differential Equations, 82 (1989), 251-268.       
18 R. Redheffer and W. Walter, Solution of the stability problem for a class of generalized Volterra prey-predator systems, J. Differential Equations, 52 (1984), 245-263.       
19 K. Ritzberger and J. Weibull, Evolutionary selection in normal-form games, Econometrica, 63 (1995), 1371-1399.       
20 W. H. Sandholm, Population Games and Evolutionary Dynamics, MIT Press, Cambridge, MA, 2010.       
21 P. Schuster , K. Sigmund, J. Hofbauer, R. Gottlieb and P. Merz, Self-regulation of behaviour in animal societies. III. Games between two populations with self-interaction, Biol. Cybernet., 40 (1981), 17-25.       
22 V. Volterra, Leçons Sur La Théorie Mathématique de la Lutte Pour La Vie, Éditions Jacques Gabay, Sceaux, 1990.       

Go to top