`a`
Discrete and Continuous Dynamical Systems - Series B (DCDS-B)
 

Positive steady state solutions of a plant-pollinator model with diffusion
Pages: 1805 - 1819, Issue 6, August 2015

doi:10.3934/dcdsb.2015.20.1805      Abstract        References        Full text (829.0K)           Related Articles

Lijuan Wang - Institute of Mathematics and Information Science, Baoji University of Arts and Sciences, Baoji, Shaanxi 721013, China (email)
Hongling Jiang - Institute of Mathematics and Information Science, Baoji University of Arts and Sciences, Baoji, Shaanxi 721013, China (email)
Ying Li - Institute of Mathematics and Information Science, Baoji University of Arts and Sciences, Baoji, Shaanxi 721013, China (email)

1 J. R. Beddington, Mutual interference between parasites or predators and its effect on searching efficiency, Journal of Animal Ecology, 44 (1975), 331-340.
2 J. Blat and K. J. Brown, Global bifurcation of positive solutions in some systems of elliptic equations, SIAM Journal on Mathematical Analysis, 17 (1986), 1339-1353.
3 R. S. Cantrell and C. Cosner, On the steady-state problem for the Volterra-Lotka competition model with diffusion, Houston J. Math., 13 (1987), 337-352.       
4 C. S. Cassanova, Existece and strueture of the set of positive solutions of a general class of sublinear elliptic non-classical mixed boundary value problems, Nonlinear Analysis: Theory, Methods & Applications, 49 (2002), 361-430.       
5 P. R. Crane, E. M. Friis and K. R. Pedersen, Lower cretaceous angiosperm flowers: Fossil evidence on early radiation of dicotyledons, Science, 232 (1986), 852-854.
6 P. R. Crane, E. M. Friis and K. R. Pedersen, The origin and early diversification of angiosperms, Nature, 374 (1994), 27-33.
7 E. N. Daneer, On the indices of fixed poins of mappings in cones and applications, Journal of Mathematical Analysis and Applications, 91 (1983), 131-151.       
8 C. Darwin, The Origin of Species, Penguin Books, London, UK. 1859.
9 C. Darwin, The Effects of Cross and Self-Fertilisation in the Vegetable Kingdom, Appelton, New York, 1876.
10 D. L. DeAngelis, R. A. Goldstein and R. V. O'Neill, A model for trophic interaction, Ecology, 56 (1975), 881-892.
11 Y. H. Du and Y. Lou, Some uniqueness and exact multiplicity results for a predator-prey model, Trans. Amer. Math. Soc., 349 (1997), 2443-2475.       
12 M. A. Fishman and L. Hadany, Plant-pollinator population dynamics, Theoretical Population Biology, 78 (2010), 270-277.
13 S. R. Jang, Dynamics of herbivore-plant-pollinator models, Journal of Mathematical Biology, 44 (2002), 129-149.       
14 L. G. Li, Coexistence theorems of steady states for predator-prey interacting systems, Transactions of the American Mathematical Society, 305 (1988), 143-166.       
15 L. Lou and S. Martínez and P. Poláčik, Loops and branches of coexistence states in a Lotka-Volterra competition model, Journal of Differential Equations, 230 (2006), 720-742.       
16 J. Smoller, Shock Waves and Reaction-Diffusion Equations, Springer, New York, 1994.       
17 J. M. Soberon and C. M. Del Rio, The dynamics of a plant-pollinator interaction, Journal of Theoretical Biology, 91(1981), 363-378.       
18 Y. Wang, H. Wu and S. Sun, Persistence of pollination mutualisms in plant-pollinator-robber systems, Theoretical Population Biology, 81 (2012), 243-250.
19 L. J. Wang and H. L. Jiang, Properties and numerical simulations of positive solutions for a variable-territory model, Applied Mathematics and Computation, 236 (2014), 647-662.       

Go to top