Journal of Modern Dynamics (JMD)

Topological full groups of minimal subshifts with subgroups of intermediate growth
Pages: 67 - 80, Volume 9, 2015

doi:10.3934/jmd.2015.9.67      Abstract        References        Full text (242.5K)           Related Articles

Nicolás Matte Bon - Laboratoire de Mathémathiques d’Orsay, Université Paris-Sud, F-91405 Orsay Cedex & DMA, École Normale Supérieure, 45 Rue d’Ulm, 75005, Paris, France (email)

1 A. Avez, Théorème de Choquet-Deny pour les groupes à croissance non exponentielle, C. R. Acad. Sci. Paris Sér. A, 279 (1974), 25-28.       
2 L. Bartholdi and R. I. Grigorchuk, On the spectrum of Hecke type operators related to some fractal groups, Tr. Mat. Inst. Steklova (Din. Sist., Avtom. i Beskon. Gruppy), 231 (2000), 5-45.
3 L. Bartholdi, R. I. Grigorchuk and Z. Šuniḱ, Branch groups, in Handbook of Algebra, Vol. 3, North-Holland, Amsterdam, 2003, 989-1112.       
4 J. Cassaigne and F. Nicolas, Factor complexity, in Combinatorics, Automata and Number Theory, Encyclopedia Math. Appl., 135, Cambridge Univ. Press, Cambridge, 2010, 163-247.       
5 Y. Cornulier, Groupes pleins-topologiques [d'après Matui, Juschenko, Monod,...], Astérisque, Séminaire Bourbaki, Vol. 2012/2013, (361), Exp. No. 1064, 2014.
6 G. Elek and N. Monod, On the topological full group of a minimal Cantor $\mathbbZ^2$-system, Proc. Amer. Math. Soc., 141 (2013), 3549-3552.       
7 R. Grigorchuk, D. Lenz, and T. Nagnibeda, Spectra of Schreier graphs of Grigorchuk's group and Schroedinger operators with aperiodic order, preprint, arXiv:1412.6822, 2014.
8 A. P. Gorjuškin, Imbedding of countable groups in $2$-generator simple groups, Mat. Zametki, 16 (1974), 231-235.       
9 W. H. Gottschalk, Almost period points with respect to transformation semi-groups, Ann. of Math. (2), 47 (1946), 762-766.       
10 T. Giordano, I. F. Putnam and C. F. Skau, Full groups of Cantor minimal systems, Israel J. Math., 111 (1999), 285-320.       
11 R. I. Grigorchuk, Degrees of growth of finitely generated groups and the theory of invariant means, Izv. Akad. Nauk SSSR Ser. Mat., 48 (1984), 939-985.       
12 P. Hall, On the embedding of a group in a join of given groups, Collection of articles dedicated to the memory of Hanna Neumann, VIII, J. Austral. Math. Soc., 17 (1974), 434-495.       
13 K. Juschenko and N. Monod, Cantor systems, piecewise translations and simple amenable groups, Ann. of Math. (2), 178 (2013), 775-787.       
14 V. A. Kaĭmanovich and A. M. Vershik, Random walks on discrete groups: Boundary and entropy, Ann. Probab., 11 (1983), 457-490.       
15 H. Matui, Some remarks on topological full groups of Cantor minimal systems, Internat. J. Math., 17 (2006), 231-251.       
16 H. Matui, Some remarks on topological full groups of Cantor minimal systems II, Ergodic Theory Dynam. Systems, 33 (2013), 1542-1549.       
17 N. Matte Bon, Subshifts with slow complexity and simple groups with the Liouville property, Geom. Funct. Anal., 24 (2014), 1637-1659.       
18 M. Queffélec, Substitution Dynamical Systems-Spectral Analysis, Lecture Notes in Mathematics, 1294, Springer-Verlag, Berlin, 1987.       
19 P. E. Schupp, Embeddings into simple groups, J. London Math. Soc. (2), 13 (1976), 90-94.       
20 E. K. van Douwen, Measures invariant under actions of $F_2$, Topology Appl., 34 (1990), 53-68.       
21 Ya. Vorobets, On a substitution subshift related to the Grigorchuk group, Tr. Mat. Inst. Steklova, (Differentsialnye Uravneniya i Topologiya. II), 271 (2010), 319-334.       
22 Ya. Vorobets, Notes on the Schreier graphs of the Grigorchuk group, in Dynamical Systems and Group Actions, Contemp. Math., 567, Amer. Math. Soc., Providence, RI, 2012, 221-248.       

Go to top