`a`
Mathematical Biosciences and Engineering (MBE)
 

Global stability of an age-structured virus dynamics model with Beddington-DeAngelis infection function
Pages: 859 - 877, Issue 4, August 2015

doi:10.3934/mbe.2015.12.859      Abstract        References        Full text (474.9K)                  Related Articles

Yu Yang - School of Science and Technology, Zhejiang International Studies University, Hangzhou 310012, China (email)
Shigui Ruan - Department of Mathematics, University of Miami, Coral Gables, FL 33124-4250, United States (email)
Dongmei Xiao - Department of Mathematics, Shanghai Jiao Tong University, Shanghai 200240, China (email)

1 C. L. Althaus and R. J. De Boer, Dynamics of immune escape during HIV/SIV infection, PLoS Comput. Biol., 4 (2008), e1000103, 9pp.       
2 F. Brauer, Z. Shuai and P. van den Driessche, Dynamics of an age-of-infection cholera model, Math. Biosci. Eng., 10 (2013), 1335-1349.       
3 C. J. Browne and S. S. Pilyugin, Global analysis of age-structured within-host virus model, Discrete Contin. Dyn. Syst. Ser. B, 18 (2013), 1999-2017.       
4 R. V. Culshaw and S. Ruan, A delay-differential equation model of HIV infection of CD4$^+$ T-cells, Math. Biosci., 165 (2000), 27-39.
5 C. Cosner, D.L. DeAngelis, J. S. Ault and D. B. Olson, Effects of spatial grouping on the functional response of predators, Theoret. Pop. Biol., 56 (1999), 65-75.
6 R. J. De Boer and A. S. Perelson, Target cell limited and immune control models of HIV infection: A comparison, J. Theoret. Biol., 190 (1998), 201-214.
7 R. D. Demasse and A. Ducrot, An age-structured within-host model for multistrain malaria infections, SIAM. J. Appl. Math., 73 (2013), 572-593.       
8 P. De Leenheer and H. L. Smith, Virus dynamics: A global analysis, SIAM J. Appl. Math., 63 (2003), 1313-1327.       
9 J. K. Hale, Asymptotic Behavior of Dissipative Systems, Mathematical Surveys and Monographs Vol 25, American Mathematical Society, Providence, RI, 1988.       
10 J. K. Hale and P. Waltman, Persistence in infinite dimensional systems, SIAM J. Math. Anal., 20 (1989), 388-395.       
11 G. Huang, W. Ma and Y. Takeuchi, Global properties for virus dynamics model with Beddington-DeAngelis functional response, Appl. Math. Lett., 22 (2009), 1690-1693.       
12 G. Huang, W. Ma and Y. Takeuchi, Global analysis for delay virus dynamics model with Beddington-DeAngelis functional response, Appl. Math. Lett., 24 (2011), 1199-1203.       
13 G. Huang, Y. Takeuchi and W. Ma, Lyapunov functionals for delay differential equations model of viral infections, SIAM J. Appl. Math., 70 (2010), 2693-2708.       
14 G. Huang, X. Liu and Y. Takeuchi, Lyapunov functions and global stability for age-structured HIV infection model, SIAM J. Appl. Math., 72 (2012), 25-38.       
15 G. Huisman and R. J. De Boer, A formal derivation of the "Beddington" functional response, J. Theoret. Biol., 185 (1997), 389-400.
16 D. Kirschner and G. F. Webb, A model for treatment strategy in the chemotherapy of AIDS, Bull. Math. Biol., 58 (1996), 367-390.
17 M. Y. Li and H. Shu, Global dynamics of an in-host viral model with intracellular delay, Bull. Math. Biol., 72 (2010), 1492-1505.       
18 M. Y. Li and H. Shu, Impact of intracellular delays and target-cell dynamics on in vivo viral infections, SIAM J. Appl. Math., 70 (2010), 2434-2448.       
19 P. Magal, Compact attractors for time-periodic age-structured population models, Electron. J. Differential Equations, 65 (2001), 1-35.       
20 P. Magal, C. C. McCluskey and G. F. Webb, Lyapunov functional and global asymptotic stability for an infection-age model, Appl. Anal., 89 (2010), 1109-1140.       
21 P. Magal and C. C. McCluskey, Two-group infection age model including an application to nosocomial infection, SIAM J. Appl. Math., 73 (2013), 1058-1095.       
22 P. Magal and H. R. Thieme, Eventual compactness for semiflows generated by nonlinear age-structured models, Commun. Pure Appl. Anal., 3 (2004), 695-727.       
23 C. C. McCluskey, Global stability for an SEI epidemiological model with continuous age-structure in the exposed and infectious classes, Math. Biosci. Eng., 9 (2012), 819-841.       
24 P. W. Nelson, M. A. Gilchrist, D. Coombs, J. M. Hyman and A. S. Perelson, An age-structured model of HIV infection that allows for variations in the production rate of viral particles and the death rate of productively infected cells, Math. Biosci. Eng., 1 (2004), 267-288.       
25 A. Nowak and C. R. M. Bangham, Population dynamics of immune responses to persistent viruses, Science, 272 (1996), 74-79.
26 M. A. Nowak and R. M. May, Virus Dynamics: Mathematical Principles of Immunology and Virology, Oxford University Press, Oxford, 2000.       
27 A. S. Perelson and P. W. Nelson, Mathematical analysis of HIV-1 dynamics in vivo, SIAM Rev., 41 (1999), 3-44.       
28 L. Rong, Z. Feng and A. S. Perelson, Mathematical analysis of age-structured HIV-1 dynamics with combination antiretroviral therapy, SIAM. J. Appl. Math., 67 (2007), 731-756.       
29 H. R. Thieme, Semiflows generated by Lipschitz perturbations of non-densely defined operators, Differential Integral Equations, 3 (1990), 1035-1066.       

Go to top