Mathematical Biosciences and Engineering (MBE)

Quantitative impact of immunomodulation versus oncolysis with cytokine-expressing virus therapeutics
Pages: 841 - 858, Issue 4, August 2015

doi:10.3934/mbe.2015.12.841      Abstract        References        Full text (423.8K)                  Related Articles

Peter S. Kim - School of Mathematics and Statistics, University of Sydney, Sydney, NSW, Australia (email)
Joseph J. Crivelli - Weill Cornell Medical College, New York, NY, United States (email)
Il-Kyu Choi - Department of Bioengineering, College of Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 133-791, South Korea (email)
Chae-Ok Yun - Department of Bioengineering, College of Engineering, Hanyang University, Seoul, South Korea (email)
Joanna R. Wares - Department of Mathematics and Computer Science, University of Richmond, Richmond, VA, United States (email)

1 T. Alarcón, H. M. Byrne and P. K. Maini, A cellular automaton model for tumour growth in inhomogeneous environment, J. Theor. Biol., 225 (2003), 257-274.       
2 N. Bagheri, M. Shiina, D. A. Lauffenburger and W. M. Korn, A dynamical systems model for combinatorial cancer therapy enhances oncolytic adenovirus efficacy by MEK-inhibition, PLoS Comput. Biol., 7 (2011), e1001085.
3 Z. Bajzer, T. Carr, K. Josić, S. J. Russell and D. Dingli, Modeling of cancer virotherapy with recombinant measles viruses, J. Theor. Biol., 252 (2008), 109-122.       
4 D. L. Bartlett, Z. Liu, M. Sathaiah, R. Ravindranathan, Z. Guo, Y. He and Z. S. Guo, Oncolytic viruses as therapeutic cancer vaccines, Mol. Cancer, 12 (2013), p103.
5 M. Biesecker, J. H. Kimn, H. Lu, D. Dingli and Z. Bajzer, Optimization of virotherapy for cancer, Bull. Math. Biol., 72 (2010), 469-489.       
6 R. Breban, A. Bisiaux, C. Biot, C. Rentsch, P. Bousso and M. L. Albert, Mathematical model of tumor immunotherapy for bladder carcinoma identifies the limitations of the innate immune response, Oncoimmunology, 1 (2012), 9-17.
7 D. M. Catron, A. A. Itano, K. A. Pape, D. L. Mueller and M. K. Jenkins, Visualizing the first 50 hr of the primary immune response to a soluble antigen, Immunity, 21 (2004), 341-347.
8 Y. Chen, T. DeWeese, J. Dilley, Y. Zhang, Y. Li, N. Ramesh, J. Lee, R. Pennathur-Das, J. Radzyminski, J. Wypych, D. Brignetti, S. Scott, J. Stephens, D. B. Karpf, D. R. Henderson and D. C. Yu, CV706, a prostate cancer-specific adenovirus variant, in combination with radiotherapy produces synergistic antitumor efficacy without increasing toxicity, Cancer Res., 61 (2001), 5453-5460.
9 R. J. De Boer, M. Oprea, R. Antia, K. Murali-Krishna, R. Ahmed and A. S. Perelson, Recruitment times, proliferation, and apoptosis rates during the CD8(+) T-cell response to lymphocytic choriomeningitis virus, J. Virol., 75 (2001), 10663-10669.
10 M. Del Vecchio, E. Bajetta, S. Canova, M. T. Lotze, A. Wesa, G. Parmiani and A. Anichini, Interleukin-12: biological properties and clinical application, Clin. Cancer Res., 13 (2007), 4677-4685.
11 D. Dingli, C. Offord, R. Myers, K. W. Peng, T. W. Carr, K. Josic, S. J. Russell and Z. Bajzer, Dynamics of multiple myeloma tumor therapy with a recombinant measles virus, Cancer Gene Ther., 16 (2009), 873-882.
12 R. Eftimie, J. L. Bramson and D. J. Earn, Interactions between the immune system and cancer: A brief review of non-spatial mathematical models, Bull. Math. Biol., 73 (2011), 2-32.       
13 N. B. Elsedawy and S. J. Russell, Oncolytic vaccines, Expert Rev. Vaccines, 12 (2013), 1155-1172.
14 A. Friedman, J. P. Tian, G. Fulci, E. A. Chiocca and J. Wang, Glioma virotherapy: Effects of innate immune suppression and increased viral replication capacity, Cancer Res., 66 (2006), 2314-2319.
15 I. Ganly, V. Mautner and A. Balmain, Productive replication of human adenoviruses in mouse epidermal cells, J. Virol., 74 (2000), 2895-2899.
16 D. Hanahan and R. A. Weinberg, Hallmarks of cancer: The next generation, Cell, 144 (2011), 646-674.
17 J. H. Huang, S. N. Zhang, K. J. Choi, I. K. Choi, J. H. Kim, M. G. Lee, M. Lee, H. Kim and C. O. Yun, Therapeutic and tumor-specific immunity induced by combination of dendritic cells and oncolytic adenovirus expressing IL-12 and 4-1BBL, Mol. Ther., 18 (2010), 264-274.
18 C. Jogler, D. Hoffmann, D. Theegarten, T. Grunwald, K. Uberla and O. Wildner, Replication properties of human adenovirus in vivo and in cultures of primary cells from different animal species, J. Virol., 80 (2006), 3549-3558.
19 H. L. Kaufman and S. D. Bines, OPTIM trial: A Phase III trial of an oncolytic herpes virus encoding GM-CSF for unresectable stage III or IV melanoma, Future Oncol., 6 (2010), 941-949.
20 N. L. Komarova and D. Wodarz, ODE models for oncolytic virus dynamics, J. Theor. Biol., 263 (2010), 530-543.       
21 N. Kronik, Y. Kogan, M. Elishmereni, K. Halevi-Tobias, S. Vuk-Pavlović and A. Agur, Predicting outcomes of prostate cancer immunotherapy by personalized mathematical models, PLoS ONE, 5 (2010), e15482.
22 F. Le Bœuf, C. Batenchuk, M. Vähä-Koskela, S. Breton, D. Roy, C. Lemay, J. Cox, H. Abdelbary, T. Falls, G. Waghray, H. Atkins, D. Stojdl, J. S. Diallo, M. Kærn and J. C. Bell, Model-based rational design of an oncolytic virus with improved therapeutic potential, Nat. Commun., 4 (2013), p1974.
23 F. Le Bœuf, J. S. Diallo, J. A. McCart, S. Thorne, T. Falls, M. Stanford, F. Kanji, R. Auer, C. W. Brown, B. D. and Lichty, K. Parato, H. Atkins, D. Kirn and J. C. Bell, Synergistic interaction between oncolytic viruses augments tumor killing, Mol. Ther., 18 (2010), 888-895.
24 D. Leopardo, S. C. Cecere, M. Di Napoli, C. Cavaliere, C. Pisano, S. Striano, L. Marra, L. Menna, L. Claudio, S. Perdona, S. Setola, M. Berretta, R. Franco, R. Tambaro, S. Pignata and G. Facchini, Intravesical chemo-immunotherapy in non muscle invasive bladder cancer, Eur. Rev. Med. Pharmacol. Sci., 17 (2013), 2145-2158.
25 H. L. Li, S. Li, J. Y. Shao, X. B. Lin, Y. Cao, W. Q. Jiang, R. Y. Liu, P. Zhao, X. F. Zhu, M. S. Zeng, Z. Z. Guan and W. Huang, Pharmacokinetic and pharmacodynamic study of intratumoral injection of an adenovirus encoding endostatin in patients with advanced tumors, Gene Ther., 15 (2008), 247-256.
26 D. G. Mallet and L. G. De Pillis, A cellular automata model of tumor-immune system interactions, J. Theor. Biol., 239 (2006), 334-350.       
27 A. Melcher, K. Parato, C. M. Rooney and J. C. Bell, Thunder and lightning: Immunotherapy and oncolytic viruses collide, Mol. Ther., 19 (2011), 1008-1016.
28 W. Mok, T. Stylianopoulos, Y. Boucher and R. K. Jain, Mathematical modeling of herpes simplex virus distribution in solid tumors: implications for cancer gene therapy, Clin. Cancer Res., 15 (2009), 2352-2360.
29 D. M. Rommelfanger, C. P. Offord, J. Dev, Z. Bajzer, R. G. Vile and D. Dingli, Dynamics of melanoma tumor therapy with vesicular stomatitis virus: Explaining the variability in outcomes using mathematical modeling, Gene Ther., 19 (2012), 543-549.
30 S. J. Russell, K. W. Peng and J. C. Bell, Oncolytic virotherapy, Nat. Biotechnol., 30 (2012), 658-670.
31 J. R. Tysome, X. Li, S. Wang, P. Wang, D. Gao, P. Du, D. Chen, R. Gangeswaran, L. S. Chard, M. Yuan, G. Alusi, N. R. Lemoine and Y. Wang, A novel therapeutic regimen to eradicate established solid tumors with an effective induction of tumor-specific immunity, Clin. Cancer Res., 18 (2012), 6679-6689.
32 M. J. van Stipdonk, E. E. Lemmens and S. P. Schoenberger, Naïve CTLs require a single brief period of antigenic stimulation for clonal expansion and differentiation, Nat. Immunol., 2 (2001), 423-429.
33 H. Veiga-Fernandes, U. Walter, C. Bourgeois, A. McLean and B. Rocha, Response of naïve and memory CD8+ T cells to antigen stimulation in vivo, Nat. Immunol., 1 (2000), 47-53.
34 Y. Wang, H. Wang, C. Y. Li and F. Yuan, Effects of rate, volume, and dose of intratumoral infusion on virus dissemination in local gene delivery, Mol. Cancer Ther., 5 (2006), 362-366.
35 D. Wodarz, Viruses as antitumor weapons: Defining conditions for tumor remission, Cancer Res., 61 (2001), 3501-3507.
36 D. Wodarz, Computational modeling approaches to studying the dynamics of oncolytic viruses, Math. Biosci. Eng., 10 (2013), 939-957.       
37 D. Wodarz and N. Komarova, Towards predictive computational models of oncolytic virus therapy: basis for experimental validation and model selection, PLoS ONE, 4 (2009), e4271.
38 J. D. Wolchok, H. Kluger, M. K. Callahan, M. A. Postow, N. A. Rizvi, A. M. Lesokhin, N. H. Segal, C. E. Ariyan, R. A. Gordon, K. Reed, M. M. Burke, A. Caldwell, S. A. Kronenberg, B. U. Agunwamba, X. Zhang, I. Lowy, H. D. Inzunza, W. Feely, C. E. Horak, Q. Hong, A. J. Korman, J. M. Wigginton, A. Gupta and M. Sznol, Nivolumab plus ipilimumab in advanced melanoma, N. Engl. J. Med., 369 (2013), 122-133.
39 S. Worgall, G. Wolff, E. Falck-Pedersen and R. G. Crystal, Innate immune mechanisms dominate elimination of adenoviral vectors following in vivo administration, Hum. Gene Ther., 8 (1997), 37-44.
40 J. T. Wu, D. H. Kirn and L. M. Wein, Analysis of a three-way race between tumor growth, a replication-competent virus and an immune response, Bull. Math. Biol., 66 (2004), 605-625.       
41 W. Zhang, G. Fulci, H. Wakimoto, T. A. Cheema, J. S. Buhrman, D. S. Jeyaretna, A. O. Stemmer Rachamimov, S. D. Rabkin and R. L. Martuza, Combination of oncolytic herpes simplex viruses armed with angiostatin and IL-12 enhances antitumor efficacy in human glioblastoma models, Neoplasia, 15 (2013), 591-599.

Go to top