`a`
Mathematical Biosciences and Engineering (MBE)
 

Traveling bands for the Keller-Segel model with population growth
Pages: 717 - 737, Issue 4, August 2015

doi:10.3934/mbe.2015.12.717      Abstract        References        Full text (551.1K)                  Related Articles

Shangbing Ai - Department of Mathematical Sciences, University of Alabama in Huntsville, Huntsville, AL 35899, United States (email)
Zhian Wang - Department of Applied Mathematics, Hong Kong Polytechnic University, Hung Hom, Hong Kong, China (email)

1 J. Adler, Chemotaxis in bacteria, Science, 44 (1975), 341-356.
2 J. Adler, Chemoreceptors in bacteria, Science, 166 (1969), 1588-1597.
3 S. Ai, W. Huang and Z. Wang, Reaction, diffusion and chemotaxis in wave propagation, Dicrete Contin. Dyn. Syst.-Series B, 20 (2015), 1-21.
4 J. Anh and K. Kang, On a keller-segel system with logarithmic sensitivity and non-diffusive chemical, Dicrete Contin. Dyn. Syst., 34 (2014), 5165-5179.       
5 L. Corrias, B. Perthame and H. Zaag, A chemotaxis model motivated by angiogenesis, C. R. Acad. Sci. Paris. Ser. I., 336 (2003), 141-146.       
6 L. Corrias, B. Perthame and H. Zaag, Global solutions of some chemotaxis and angiogenesis system in high space dimensions, Milan j. Math., 72 (2004), 1-28.       
7 M. Fontelos, A. Friedman and B. Hu, Mathematical analysis of a model for the initiation of angiogenesis, SIAM J. Math. Anal., 33 (2002), 1330-1355.       
8 M. Funaki, M. Mimura and T. Tsujikawa, Travelling front solutions arising in the chemotaxis-growth model, Interfaces Free Bound., 8 (2006), 223-245.       
9 H. Jin, J. Li and Z. Wang, Asymptotic stability of traveling waves of a chemotaxis model with singular sensitivity, J. Differential Equations, 255 (2013), 193-219.       
10 Y. Kalinin, L. Jiang, Y. Tu and M. Wu, Logarithmic sensing in escherichia coli bacterial chemotaxis, Biophysical Journal, 96 (2009), 2439-2448.
11 E. Keller and L. Segel, Traveling bands of chemotactic bacteria: A theorectical analysis, J. Theor. Biol., 30 (1971), 235-248.
12 C. Kennedy and R. Aris, Traveling waves in a simple population model involving growth and death, Bull. Math. Biol., 42 (1980), 397-429.       
13 I. Lapidus and R. Schiller, A model for traveling bands of chemotactic bacteria, Biophy. J., 22 (1978), 1-13.
14 D. Lauffenburger, C. Kennedy and R. Aris, Traveling bands of chemotactic bacteria in the context of population growth, Bull. Math. Biol., 46 (1984), 19-40.
15 H. Levine, B. Sleeman and M. Nilsen-Hamilton, A mathematical model for the roles of pericytes and macrophages in the initiation of angiogenesis. i. the role of protease inhibitors in preventing angiogenesis, Math. Biosci, 168 (2000), 71-115.       
16 D. Li, T. Li and K. Zhao, On a hyperbolic-parabolic system modeling chemotaxis, Math. Models Methods Appl. Sci., 21 (2011), 1631-1650.       
17 J. Li, T. Li and Z. WAng, Stability of traveling waves of the Keller-Segel system with logarithmic sensitivity, Math. Models Methods Appl. Sci., 24 (2014), 2819-2849.       
18 T. Li and Z. Wang, Nonlinear stability of traveling waves to a hyperbolic-parabolic system modeling chemotaxis, SIAM J. Appl. Math., 70 (2009), 1522-1541.       
19 T. Li and Z. Wang, Nonlinear stability of large amplitude viscous shock waves of a hyperbolic-parabolic system arising in chemotaxis, Math. Models Methods Appl. Sci., 20 (2010), 1967-1998.       
20 T. Li and Z. Wang, Asymptotic nonlinear stability of traveling waves to conservation laws arising from chemotaxis, J. Differential Equations, 250 (2011), 1310-1333.       
21 R. Lui and Z. Wang, Traveling wave solutions from microscopic to macroscopic chemotaxis models, J. Math. Biol., 61 (2010), 739-761.       
22 G. Nadin, B. Perthame and L. Ryzhik, Traveling waves for the Keller-Segel system with fisher birth terms, Interfaces Free Bound., 10 (2008), 517-538.       
23 T. Nagai and T. Ikeda, Traveling waves in a chemotaxis model, J. Math. Biol., 30 (1991), 169-184.       
24 R. Nossal, Boundary movement of chemotactic bacterial population, Math. Biosci., 13 (1972), 397-406.
25 G. Rosen, Analytical solution to the initial-value problem for traveling bands of chemotaxis bacteria, J. Theor. Biol., 49 (1975), 311-321.
26 G. Rosen, Steady-state distribution of bacteria chemotactic toward oxygen, Bull. Math. Biol., 40 (1978), 671-674.       
27 G. Rosen and S. Baloga, On the stability of steadily propogating bands of chemotactic bacteria, Math. Biosci., 24 (1975), 273-279.       
28 J. Saragosti, V. Calvez, N. Bournaveas, A. Buguin, P. Silberzan and B. Perthame, Mathematical description of bacterial traveling pulses, PLoS computational biology, 6 (2010), e1000890, 12pp.       
29 J. Saragosti, V. Calvez, N. Bournaveas, B. Perthame, A. Buguin and P. Silberzan, Directional persistence of chemotactic bacteria in a traveling concentration wave, PNAS, 108 (2011), 16235-16240.
30 H. Schwetlick, Traveling waves for chemotaxis systems, Proc. Appl. Math. Mech., 3 (2003), 476-478.
31 C. Walker and G. Webb, Global existence of classical solutions for a haptoaxis model, SIAM J. Math. Anal., 38 (2006), 1694-1713.       
32 Z. Wang, Wavefront of an angiogenesis model, Discrete Contin. Dyn. Syst.-Series B, 17 (2012), 2849-2860.       
33 Z. Wang, Mathematics of traveling waves in chemotaxis, Discrete Contin. Dyn. Syst.-Series B, 18 (2013), 601-641.       
34 Z. Wang and T. Hillen, Shock formation in a chemotaxis model, Math. Methods. Appl. Sci., 31 (2008), 45-70.       

Go to top