`a`
Advances in Mathematics of Communications (AMC)
 

Zero correlation zone sequence set with inter-group orthogonal and inter-subgroup complementary properties
Pages: 9 - 21, Issue 1, February 2015

doi:10.3934/amc.2015.9.9      Abstract        References        Full text (424.1K)                  Related Articles

Zhenyu Zhang - College of Communication Engineering, Chongqing University, Chongqing 400044, China (email)
Lijia Ge - College of Communication Engineering, Chongqing University, Chongqing 400044, China (email)
Fanxin Zeng - College of Communication Engineering, Chongqing University, Chongqing 400044, China, and Chongqing Key Laboratory of Emergency Communication, Chongqing Communication Institute, Chongqing 400035, China (email)
Guixin Xuan - Chongqing Key Laboratory of Emergency Communication, Chongqing Communication Institute, Chongqing 400035, China (email)

1 H. H. Chen, Y. C. Yeh, et al., Generalized pairwise complementary codes with set-wise uniform interference-free windows, IEEE J. Sel. Areas Commun., 24 (2006), 65-74.
2 P. Z. Fan, N. Suehiro, N. Kuroyanagi and X. M. Deng, A class of binary sequences with zero correlation zone, Electr. Lett., 35 (1999), 777-779.
3 P. Z. Fan, W. N. Yuan and Y. F. Tu, Z-complementary binary sequences, IEEE Signal Process. Lett., 14 (2007), 509-512.
4 L. F. Feng, P. Z. Fan, X. H. Tang and K.-K. Loo, Generalized pairwise Z-complementary codes, IEEE Signal Process. Lett., 15 (2008), 377-380.
5 L. F. Feng, X. W. Zhou and P. Z. Fan, A construction of inter-group complementary codes with flexible ZCZ length, J. Zhejiang Univ. Sci. C, 12 (2011), 846-854.
6 L. F. Feng, X. W. Zhou and X. Y. Li, A general construction of inter-group complementary codes based on Z-complementary codes and perfect periodic cross-correlation codes, Wireless Pers. Commun., 71 (2012), 695-706.
7 M. J. E. Golay, Complementary series, IRE. Trans. Inf. Theory, 7 (1961), 82-87.       
8 T. Hayashi, Ternary sequence set having periodic and aperiodic zero-correlation zone, IEICE Trans. Fundamentals, E89-A (2006), 1825-1831.
9 T. Hayashi, T. Maeda and S. Matsufuji, A generalized construction scheme of a zero-correlation zone sequence set with a wide inter-subset zero-correlation zone, IEICE Trans. Fundamentals, E95-A (2012), 1931-1936.
10 T. Hayashi, T. Maeda, S. Matsufuji and S. Okawa, A ternary zero-correlation zone sequence set having wide inter-subset zero-correlation zone, IEICE Trans. Fundamentals, E94-A (2011), 2230-2235.
11 T. Hayashi, T. Maeda and S. Okawa, A generalized construction of zero-correlation zone sequence set with sequence subsets, IEICE Trans. Fundamentals, E94-A (2011), 1597-1602.
12 T. Hayashi and S. Matsufuji, A generalized construction of optimal zero-correlation zone sequence set from a perfect sequence pair, IEICE Trans. Fundamentals, E93-A (2010), 2337-2344.
13 H. G. Hu and G. Gong, New sets of zero or low correlation zone sequences via interleaving techniques, IEEE Trans. Inf. Theory, 56 (2010), 1702-1713.       
14 J. W. Jang, Y. S. Kim and S. H. Kim, New design of quaternary LCZ and ZCZ sequence set from binary LCZ and ZCZ sequence set, Adv. Math. Commun., 3 (2009), 115-124.       
15 J. W. Jang, Y. S. Kim, S. H. Kim and D. W. Lim, New construction methods of quaternary periodic complementary sequence sets, Adv. Math. Commun., 4 (2010), 61-68.       
16 J. Li, A. P. Huang, M. Guizani and H. H. Chen, Inter-group complementary codes for interference-resistant CDMA wireless communications, IEEE Trans. Wireless Commun., 7 (2008), 166-174.
17 X. D. Li, P. Z. Fan, X. H. Tang and L. Hao, Quadriphase Z-complementary sequences, IEICE Trans. Fundamentals, E93-A (2010), 2251-2257.
18 Y. B. Li, C. Q. Xu and K. Liu, Construction of mutually orthogonal zero correlation zone polyphase sequence sets, IEICE Trans. Fundamentals, E94-A (2011), 1159-1164.
19 S. Matsufuji, T. Matsumoto, T. Hayashida, T. Hayashi, N. Kuroyanagi and P. Z. FAN, On a ZCZ code including a sequence used for a synchronization symbol, IEICE Trans. Fundamentals, E93-A (2010), 2286-2290.
20 K. Omata, H. Torii and T. Matsumoto, Zero-cross-correlation properties of asymmetric ZCZ sequence sets, IEICE Trans. Fundamentals, E95-A (2012), 1926-1930.
21 A. Rathinakumar and A. K. Chaturvedi, Mutually orthogonal sets of ZCZ sequences, Electron. Lett., 40 (2004), 1133-1134.
22 A. Rathinakumar and A. K. Chaturvedi, A new framework for constructing mutually orthogonal complementary sets and ZCZ sequences, IEEE Trans. Inf. Theory, 52 (2006), 3817-3826.       
23 A. Rathinakumar and A. K. Chaturvedi, Complete mutually orthogonal Golay complementary sets from Reed-Muller codes, IEEE Trans. Inf. Theory, 54 (2008), 1339-1346.       
24 X. H. Tang, P. Z. Fan and J. Lindner, Multiple binary ZCZ sequence sets with good cross-correlation property based on complementary sequence sets, IEEE Trans. Inf. Theory, 56 (2010), 4038-4045.       
25 X. H. Tang and W. H. Mow, Design of spreading codes for quasi-synchronous CDMA with intercell interference, IEEE J. Sel. Areas Commun., 24 (2006), 84-93.
26 X. H. Tang and W. H. Mow, A new systematic construction of zero correlation zone sequences based on interleaved perfect sequences, IEEE Trans. Inf. Theory, 54 (2008), 5729-5734.       
27 H. Torii, T. Matsumoto and M. Nakamura, A new method for constructing asymmetric ZCZ sequences sets, IEICE Trans. Fundamentals, E95-A (2012), 1577-1586.
28 H. Torii, M. Nakamura and N. Suehiro, A new class of zero-correlation zone sequences, IEEE Trans. Inf. Theory, 50 (2004), 559-565.       
29 H. Torii, M. Satoh, T. Matsumoto and M. Nakamura, Generalized mutually orthogonal ZCZ sequence sets based on perfect sequences and orthogonal codes, in Proc. 15th Int. Conf. Adv. Commun. Techn., 2013, 894-899.
30 H. Torii, M. Satoh, T. Matsumoto and M. Nakamura, Quasi-optimal and optimal generalized mutually orthogonal ZCZ sequence sets based on an interleaving technique, Int. J. Commun., 7 (2013), 18-25.
31 Y. F. Tu, P. Z. Fan, L. Hao and X. Y. Li, Construction of binary array set with zero correlation zone based on interleaving technique, IEICE Trans. Fundamentals, E94-A (2011), 766-772.
32 Y. F. Tu, P. Z. Fan, L. Hao and X. H. Tang, A simple method for generating optimal Z-periodic complementary sequence set based on phase shift, IEEE Signal Process. Lett., 17 (2010), 891-893.
33 F. X. Zeng, New perfect ployphase sequences and mutually orthogonal ZCZ polyphase sequence sets, IEICE trans. Fundamentals, E92-A (2009), 1731-1736.
34 F. X. Zeng, X. P. Zeng, Z. Y. Zhang and G. X. Xuan, Quaternary periodic complementary/Z-complementary sequence sets based upon interleaving technique and Gray mapping, Adv. Math. Commun., 6 (2012), 237-247.       
35 C. Zhang, X. M. Tao, S. Yamada and M. Hatori, Sequence set with three zero correlation zone and its application in MC-CDMA system, IEICE Trans. Fundamentals, E89-A (2006), 2275-2282.
36 Z. Y. Zhang, W. Chen, F. X. Zeng, H. Wu and Y. H. Zhong, Z-complementary sets based on sequences with periodic and aperiodic zero correlation zone, EURASIP J. Wireless Comm. Networking, 2009 (2009), 1-8.
37 Z. Y. Zhang, F. X. Zeng and G. X. Xuan, A class of complementary sequences with multi-width zero cross-correlation zone, IEICE Trans. Fundamentals, E93-A (2010), 1508-1517.
38 Z. C. Zhou, X. H. Tang and G. Gong, A new class of sequences with zero or low correlation zone based on interleaving technique, IEEE Trans. Inf. Theory, 54 (2008), 4267-4273.       

Go to top