Mathematical Biosciences and Engineering (MBE)

A population model capturing dynamics of tuberculosis granulomas predicts host infection outcomes
Pages: 625 - 642, Issue 3, June 2015

doi:10.3934/mbe.2015.12.625      Abstract        References        Full text (587.9K)           Related Articles

Chang Gong - 6775 Medical Science Building II, Ann Arbor, MI 48109-5620, United States (email)
Jennifer J. Linderman - B28-G045W NCRC, Ann Arbor, MI 48109-5620, United States (email)
Denise Kirschner - 6730 Medical Science Building II, Ann Arbor, MI 48109-5620, United States (email)

1 I. Y. Adamson, Drug-induced pulmonary fibrosis, Environmental health perspectives, 55 (1984), 25-36.
2 C. E. Barry, H. I. Boshoff, V. Dartois, T. Dick, S. Ehrt, J. Flynn, D. Schnappinger, R. J. Wilkinson and D. Young, The spectrum of latent tuberculosis: Rethinking the biology and intervention strategies, Nature reviews. Microbiology, 7 (2009), 845-855.
3 S. M. Blower, A. R. McLean, T. C. Porco, P. M. Small, P. C. Hopewell, M. A. Sanchez and A. R. Moss, The intrinsic transmission dynamics of tuberculosis epidemics, Nature Medicine, 1 (1995), 815-821.
4 P.-J. Cardona, New insights on the nature of latent tuberculosis infection and its treatment, Inflammation & allergy drug targets, 6 (2007), 27-39.
5 C. Castillo-Ch├ívez and J. Aparicio, Mathematical modelling of tuberculosis epidemics, Mathematical Biosciences and Engineering, 6 (2009), 209-237.       
6 C. Castillo-Chavez and Z. Feng, To treat or not to treat: The case of tuberculosis, Journal of mathematical biology, 35 (1997), 629-656.       
7 A. A. Chackerian, J. M. Alt, T. V. Perera, C. C. Dascher and S. M. Behar, Dissemination of Mycobacterium tuberculosis Is Influenced by Host Factors and Precedes the Initiation of T-Cell Immunity, Infection and Immunity, 70 (2002), 4501-4509.
8 N. A. Cilfone, C. R. Perry, D. E. Kirschner and J. J. Linderman, Multi-scale modeling predicts a balance of tumor necrosis factor-$\alpha$ and interleukin-10 controls the granuloma environment during Mycobacterium tuberculosis infection, PloS one, 8 (2013), e68680.
9 M. T. Coleman, R. Y. Chen, M. Lee, P. L. Lin, L. E. Dodd, P. Maiello, L. E. Via, Y. Kim, G. Marriner, V. Dartois, C. Scanga, C. Janssen, J. Wang, E. Klein, S. N. Cho, C. E. Barry 3rd and J. L. Flynn, PET/CT imaging reveals a therapeutic response to oxazolidinones in macaques and humans with tuberculosis, Sci Transl Med, 6 (2014), p265ra167.
10 J. A. Cooper, D. A. White and R. A. Matthay, Drug-induced pulmonary disease. Part 1: Cytotoxic drugs, The American review of respiratory disease, 133 (1986), 321-340.
11 E. L. Corbett, C. J. Watt, N. Walker, D. Maher, B. G. Williams, M. C. Raviglione and C. Dye, The growing burden of tuberculosis: Global trends and interactions with the HIV epidemic, Archives of internal medicine, 163 (2003), 1009-1021.
12 M. H. Daba, K. E. El-Tahir, M. N. Al-Arifi and O. A. Gubara, Drug-induced pulmonary fibrosis, 2004.
13 O. Diekmann, J. A. P. Heesterbeek and M. G. Roberts, The construction of next-generation matrices for compartmental epidemic models, Journal of the Royal Society, Interface / the Royal Society, 7 (2010), 873-885.
14 C. Dye, G. P. Garnett, K. Sleeman and B. G. Williams, Prospects for worldwide tuberculosis control under the WHO DOTS strategy, The Lancet, 352 (1998), 1886-1891.
15 M. Fallahi-Sichani, J. L. Flynn, J. J. Linderman and D. E. Kirschner, Differential risk of tuberculosis reactivation among anti-TNF therapies is due to drug binding kinetics and permeability, Journal of immunology (Baltimore, Md. : 1950), 188 (2012), 3169-3178.
16 M. Fallahi-Sichani, D. E. Kirschner and J. J. Linderman, NF-$\kappa$B Signaling Dynamics Play a Key Role in Infection Control in Tuberculosis, Frontiers in physiology, 2012.
17 M. Fallahi-Sichani, M. A. Schaller, D. E. Kirschner, S. L. Kunkel and J. J. Linderman, Identification of key processes that control tumor necrosis factor availability in a tuberculosis granuloma, PLoS computational biology, 6 (2010), e1000778, 19pp.       
18 Z. Feng, C. Castillo-Chavez and A. F. Capurro, A model for tuberculosis with exogenous reinfection, Theoretical population biology, 57 (2000), 235-247.
19 J. L. Flynn and J. Chan, Immunology of tuberculosis, Annual review of immunology, 19 (2001), 93-129.
20 C. Gong, J. T. Mattila, M. Miller, J. L. Flynn, J. J. Linderman and D. Kirschner, Predicting lymph node output efficiency using systems biology, Journal of theoretical biology, 335 (2013), 169-184.
21 G. Guzzetta, M. Ajelli, Z. Yang, S. Merler, C. Furlanello and D. Kirschner, Modeling socio-demography to capture tuberculosis transmission dynamics in a low burden setting, Journal of theoretical biology, 289 (2011), 197-205.       
22 D. Kirschner, Dynamics of co-infection with M. Tuberculosis and HIV-1, Theoretical population biology, 55 (1999), 94-109.
23 D. E. Kirschner, S. T. Chang, T. W. Riggs, N. Perry and J. J. Linderman, Toward a multiscale model of antigen presentation in immunity, Immunological reviews, 216 (2007), 93-118.
24 P. L. Lin, T. Coleman, J. P. J. Carney, B. J. Lopresti, J. Tomko, D. Fillmore, V. Dartois, C. Scanga, L. J. Frye, Ch. Janssen, E. Klein, C. E. Barry and Joanne L Flynn, Radiologic responses in cynomolgous macaques for assessing tuberculosis chemotherapy regimens, Antimicrobial agents and chemotherapy, 57 (2013), 4237-4244.
25 P. L. Lin, C. B. Ford, M. T. Coleman, A. J. Myers, R. Gawande, T. Ioerger, J. Sacchettini, S. M. Fortune and J. L. Flynn, Sterilization of granulomas is common in active and latent tuberculosis despite within-host variability in bacterial killing, Nature medicine, 20 (2014), 75-79.
26 P. L. Lin, M. Rodgers, L. Smith, M. Bigbee, A. Myers, C. Bigbee, I. Chiosea, S. V. Capuano, C. Fuhrman, E. Klein and J. L. Flynn, Quantitative comparison of active and latent tuberculosis in the cynomolgus macaque model, Infection and immunity, 77 (2009), 4631-4642.
27 J. J. Linderman, T. Riggs, M. Pande, M. Miller, S. Marino and D. E. Kirschner, Characterizing the dynamics of CD4+ T cell priming within a lymph node, Journal of immunology (Baltimore, Md. : 1950), 184 (2010), 2873-2885.
28 G. Magombedze, W. Garira and E. Mwenje, Modelling the human immune response mechanisms to mycobacterium tuberculosis infection in the lungs, Mathematical biosciences and engineering : MBE, 3 (2006), 661-682.       
29 G. Magombedze and N. Mulder, A mathematical representation of the development of Mycobacterium tuberculosis active, latent and dormant stages, Journal of theoretical biology, 292 (2012), 44-59.
30 S. Marino, M. El-Kebir and D. Kirschner, A hybrid multi-compartment model of granuloma formation and T cell priming in tuberculosis, Journal of theoretical biology, 280 (2011), 50-62.
31 S. Marino, I. B. Hogue, C. J. Ray and D. E. Kirschner, A methodology for performing global uncertainty and sensitivity analysis in systems biology, Journal of theoretical biology, 254 (2008), 178-196.       
32 S. Marino and D. E. Kirschner, The human immune response to Mycobacterium tuberculosis in lung and lymph node, Journal of theoretical biology, 227 (2004), 463-486.
33 S. Marino, J. J. Linderman and D. E. Kirschner, A multifaceted approach to modeling the immune response in tuberculosis, Wiley interdisciplinary reviews. Systems biology and medicine, 3 (2011), 479-489.
34 F. A. Milner, M. Iannelli and Z. Feng, A Two-Strain Tuberculosis Model with Age of Infection, SIAM Journal on Applied Mathematics, 62 (2002), 1634-1656.       
35 B. M. Murphy, B. H. Singer, S. Anderson and D. Kirschner, Comparing epidemic tuberculosis in demographically distinct heterogeneous populations, Mathematical Biosciences, 180 (2002), 161-185.       
36 B. M. Murphy, B. H. Singer and D. Kirschner, On treatment of tuberculosis in heterogeneous populations, Journal of Theoretical Biology, 223 (2003), 391-404.
37 A. O'Garra, P. S. Redford, F. W. McNab, C. I. Bloom, R. J. Wilkinson and M. P. R. Berry, The immune response in tuberculosis, Annual review of immunology, 31 (2013), 475-527.
38 W. H. Organization, Global Tuberculosis Report 2013, 2013.
39 R. Pabst, J. Westermann and H. J. Rothkotter, Immunoarchitecture of regenerated splenic and lymph node transplants, Int Rev Cytol, 128 (1991), 215-260.
40 T. H. Petersen, E. A. Calle, L. Zhao, E. J. Lee, L. Gui, M. B. Raredon, K. Gavrilov, T. Yi, Z. W. Zhuang, C. Breuer, E. Herzog and L. E. Niklason, Tissue-engineered lungs for in vivo implantation, Science, 329 (2010), 538-541.
41 L. Ramakrishnan, Revisiting the role of the granuloma in tuberculosis, Nature reviews. Immunology, 12 (2012), 352-366.
42 J. Rengarajan, B. R. Bloom and E. J. Rubin, Genome-wide requirements for Mycobacterium tuberculosis adaptation and survival in macrophages, Proceedings of the National Academy of Sciences of the United States of America, 102 (2005), 8327-8332.
43 J. L. Segovia-Juarez, S. Ganguli and D. Kirschner, Identifying control mechanisms of granuloma formation during M. tuberculosis infection using an agent-based model, Journal of theoretical biology, 231 (2004), 357-376.       
44 B. H. Singer and D. E. Kirschner, Influence of backward bifurcation on interpretation of r(0) in a model of epidemic tuberculosis with reinfection, Mathematical biosciences and engineering: MBE, 1 (2004), 81-93.       
45 L. E. Via, D. M. Weiner, D. Schimel, P. L. Lin, E. Dayao, S. L. Tankersley, Y. Cai, M. T. Coleman, J. Tomko, P. Paripati, M. Orandle, R. J. Kastenmayer, M. Tartakovsky, A. Rosenthal, D. Portevin, S. Y. Eum, S. Lahouar, S. Gagneux, D. B. Young, J. L. Flynn and C. E. Barry, Differential virulence and disease progression following Mycobacterium tuberculosis complex infection of the common marmoset (Callithrix jacchus), Infection and immunity, 81 (2013), 2909-2919.
46 J. E. Wigginton and D. Kirschner, A Model to Predict Cell-Mediated Immune Regulatory Mechanisms During Human Infection with Mycobacterium tuberculosis, The Journal of Immunology, 166 (2001), 1951-1967.
47 P. Ye and D. E. Kirschner, Reevaluation of T Cell Receptor Excision Circles as a Measure of Human Recent Thymic Emigrants, The Journal of Immunology, 168 (2002), 4968-4979.
48 D. Young, J. Stark and D. Kirschner, Systems biology of persistent infection: Tuberculosis as a case study, Nature reviews. Microbiology, 6 (2008), 520-528.

Go to top