Global stability of a multiple delayed viral infection model with general incidence rate and an application to HIV infection
Pages: 525  536,
Issue 3,
June
2015
doi:10.3934/mbe.2015.12.525 Abstract
References
Full text (441.0K)
Related Articles
Yu Ji  Department of Mathematics, Beijing Technology and Business University, Beijing, 100048, China (email)
1 
A. A. Canabarro, I. M. Gleria and M. L. Lyra, Periodic solutions and chaos in a nonlinear model for the delayed cellular immune response, Physica A, 342 (2004), 234241. 

2 
O. Diekmann, J. A. P. Heesterbeek and J. A. J. Metz, On the definition and the computation of the basic reproduction ratio $R_0$ in models for infectious diseases in heterogeneous populations, J. Math. Biol., 28 (1990), 365382. 

3 
P. van den Driessche and J. Watmough, Reproduction numbers and subthreshold endemic equilibra for compartmental models of disease trensmission, Math. Biosci., 180 (2002), 2948. 

4 
S. A. Gourley, Y. Kuang and J. D. Nagy, Dynamics of a delay differential model of hepatitis B virus infection, J. Biol. Dynam., 2 (2008), 140153. 

5 
K. Hattaf, N. Yousfi and A. Tridane, Mathematical analysis of a virus dynamics model with general incidence rate and cure rate, Nonlinear AnalReal, 13 (2012), 18661872. 

6 
Z. X. Hu, J. J. Zhang and H. Wang, et al., Dynamics analysis of a delayed viral infection model with logistic growth and immune impairment, Appl. Math. Model., 38 (2014), 524534. 

7 
G. Huang, W. B. Ma and Y. Takeuchi, Global analysis for delay virus dynamics model with BeddingtonDeAngelis functional response, Appl. Math. Lett., 24 (2011), 11991203. 

8 
Y. Ji, L. Q. Min and Y. A. Ye, Global analysis of a viral infection model with application to HBV infection, J. Biol. Syst., 18 (2010), 325337. 

9 
S. Lewin, T. Walters and S. Locarnini, Hepatitis B treatment: Rational combination chemotherapy based on viral kinetic and animal model studies, Antivir. Res., 55 (2002), 381396. 

10 
D. Li and W. B. Ma, Asymptotic properties of an HIV1 infection model with time delay, J. Math. Anal. Appl., 335 (2007), 683691. 

11 
L. Q. Min, Y. M. Su and Y. Kuang, Mathematical analysis of a basic virus infection model with application to HBV infection, Rocky Mt. J. Math., 38 (2008), 15731585. 

12 
Y. Nakata, Global dynamics of a viral infection model with a latent period and BeddingtonDeAngelis response, Nonlinear AnalTheor., 74 (2011), 29292940. 

13 
M. A. Nowak and R. M. May, Virus Dynamics, Oxford University Press, New York, 2000. 

14 
A. S. Perelson and P. W. Nelson, Mathematical analysis of HIV1 dynamics in vivo, SIAM Rev., 41 (1999), 344. 

15 
X. Y. Song and A. U. Neumann, Global stability and periodic solution of the viral dynamics, J. Math. Anal. Appl., 329 (2007), 281297. 

16 
X. Y. Song, X. Y. Zhou and X. Zhao, Properties of stability and Hopf bifurcaion for a HIV infection model with time delay, Appl. Math. Model., 34 (2010), 15111523. 

17 
Y. N. Tian and X. N. Liu, Global dynamics of a virus dynamical model with general incidence rate and cure rate, Nonlinear AnalReal, 16 (2014), 1726. 

18 
K. F. Wang, A. J. Fan and A. Torres, Global properties of an improved hepatitis B virus model, Nonlinear AnalReal, 11 (2010), 31313138. 

19 
T. L. Wang, Z. X. Hu and F. C. Liao, et al., Global stability analysis for delayed virus infection model with general incidence rate and humoral immunity, Math. Comput. Simulat., 89 (2013), 1322. 

20 
S. L. Wang, X. Y. Song and Z. H. Ge, Dynamics analysisi of a delayed viral infection model with immune impairment, Appl. Math. Model., 35 (2011), 48774885. 

21 
Z. P. Wang and R. Xu, Stability and Hopf bifurcation in a viral infection model with nonlinear incidence rate and delayed immune response, Commun. Nonlinear Sci. Numer. Simulat., 17 (2012), 964978. 

22 
R. Xu, Global stability of an HIV1 infection model with saturation infection and intracellular delay, J. Math. Anal. Appl., 375 (2011), 7581. 

Go to top
