Mathematical Biosciences and Engineering (MBE)

A hybrid model for traffic flow and crowd dynamics with random individual properties
Pages: 393 - 413, Issue 2, April 2015

doi:10.3934/mbe.2015.12.393      Abstract        References        Full text (844.6K)                  Related Articles

Veronika Schleper - Institute for Applied Analysis and Numerical Simulation, University of Stuttgart, D-70569 Stuttgart, Germany (email)

1 P. Amorim, R. M. Colombo and A. Teixeira, On the numerical integration of scalar conservation laws, preprint, 2013.
2 A. Aw and M. Rascle, Resurrection of "second order'' models of traffic flow, SIAM J. Appl. Math., 60 (2000), 916-938 (electronic).       
3 N. Bellomo and C. Dogbé, On the modelling crowd dynamics from scaling to hyperbolic macroscopic models, Math. Models Methods Appl. Sci., 18 (2008), 1317-1345.       
4 N. Bellomo and C. Dogbé, On the modeling of traffic and crowds: A survey of models, speculations, and perspectives, SIAM Review, 53 (2011), 409-463.       
5 R. M. Colombo, M. Garavello and M. Lécureux-Mercier, A class of non-local models for pedestrian traffic, Mathematical Models and Methods in the Applied Sciences, 22 (2012), 1150023, 34 p.       
6 R. M. Colombo and N. Pogodaev, Confinement strategies in a model for the interaction between individuals and a continuum, SIAM J. Appl. Dyn. Syst., 11 (2012), 741-770.       
7 M. Crandall and A. Majda, The method of fractional steps for conservation laws, Numer. Math., 34 (1980), 285-314.       
8 E. Cristiani, B. Piccoli and A. Tosin, Multiscale modeling of granular flows with application to crowd dynamics, Multiscale Model. Simul., 9 (2011), 155-182.       
9 C. F. Daganzo, Requiem for second-order fluid approximations to traffic flow, Transp. Res. B, 29 (1995), 277-286.
10 G. Dal Maso, P. G. Lefloch and F. Murat, Definition and weak stability of nonconservative products, J. Math. Pures Appl. (9), 74 (1995), 483-548.       
11 D. Helbing, Derivation of non-local macroscopic traffic equations and consistent traffic pressures from microscopic car-following models, The European Physical Journal B, 69 (2009), 539-548.
12 D. Helbing and A. F. Johansson, On the controversy around Daganzo's requiem for and Aw-Rascle's resurrection of second-order traffic flow models, Modelling and Optimisation of Flows on Networks, (2013), 271-302.
13 R. L. Hughes, A continuum theory for the flow of pedestrians, Transportation Research Part B: Methodological, 36 (2002), 507-535.
14 S. N. Kružhkov, First order quasilinear equations with several independent variables, Mat. Sb. (N.S.), 81 (1970), 228-255.       
15 M. J. Lighthill and G. B. Whitham, On kinematic waves. II. A theory of traffic flow on long crowded roads, Proc. Roy. Soc. London. Ser. A., 229 (1955), 317-345.       
16 S. Mishra and C. Schwab, Sparse tensor multi-level Monte Carlo finite volume methods for hyperbolic conservation laws with random initial data, Math. Comp., 81 (2012), 1979-2018.       
17 P. I. Richards, Shock waves on the highway, Operations Res., 4 (1956), 42-51.       
18 M. Sabry Hassouna and A. A. Farag, Multistencils fast marching methods: A highly accurate solution to the eikonal equation on cartesian domains, IEEE Transactions on Pattern Analysis and Machine Intelligence, 29 (2007), 1563-1574.
19 Y. Sugiyama, M. Fukui, M. Kikuchi, K. Hasebe, A. Nakayama, K. Nishinari, S.-i. Tadaki and S. Yukawa, Traffic jams without bottlenecks-experimental evidence for the physical mechanism of the formation of a jam, New Journal of Physics, 10 (2008), 033001.
20 S.-i. Tadaki, M. Kikuchi, F. Minoru, A. Nakayama, K. Nishinari, A. Shibata, Y. Sugiyama, T. Yosida and S. Yukawa, Phase transition in traffic jam experiment on a circuit, New Journal of Physics, 15 (2013), 103034.

Go to top