A hybrid model for traffic flow and crowd dynamics with random individual properties
Pages: 393  413,
Issue 2,
April
2015
doi:10.3934/mbe.2015.12.393 Abstract
References
Full text (844.6K)
Related Articles
Veronika Schleper  Institute for Applied Analysis and Numerical Simulation, University of Stuttgart, D70569 Stuttgart, Germany (email)
1 
P. Amorim, R. M. Colombo and A. Teixeira, On the numerical integration of scalar conservation laws, preprint, 2013. 

2 
A. Aw and M. Rascle, Resurrection of "second order'' models of traffic flow, SIAM J. Appl. Math., 60 (2000), 916938 (electronic). 

3 
N. Bellomo and C. Dogbé, On the modelling crowd dynamics from scaling to hyperbolic macroscopic models, Math. Models Methods Appl. Sci., 18 (2008), 13171345. 

4 
N. Bellomo and C. Dogbé, On the modeling of traffic and crowds: A survey of models, speculations, and perspectives, SIAM Review, 53 (2011), 409463. 

5 
R. M. Colombo, M. Garavello and M. LécureuxMercier, A class of nonlocal models for pedestrian traffic, Mathematical Models and Methods in the Applied Sciences, 22 (2012), 1150023, 34 p. 

6 
R. M. Colombo and N. Pogodaev, Confinement strategies in a model for the interaction between individuals and a continuum, SIAM J. Appl. Dyn. Syst., 11 (2012), 741770. 

7 
M. Crandall and A. Majda, The method of fractional steps for conservation laws, Numer. Math., 34 (1980), 285314. 

8 
E. Cristiani, B. Piccoli and A. Tosin, Multiscale modeling of granular flows with application to crowd dynamics, Multiscale Model. Simul., 9 (2011), 155182. 

9 
C. F. Daganzo, Requiem for secondorder fluid approximations to traffic flow, Transp. Res. B, 29 (1995), 277286. 

10 
G. Dal Maso, P. G. Lefloch and F. Murat, Definition and weak stability of nonconservative products, J. Math. Pures Appl. (9), 74 (1995), 483548. 

11 
D. Helbing, Derivation of nonlocal macroscopic traffic equations and consistent traffic pressures from microscopic carfollowing models, The European Physical Journal B, 69 (2009), 539548. 

12 
D. Helbing and A. F. Johansson, On the controversy around Daganzo's requiem for and AwRascle's resurrection of secondorder traffic flow models, Modelling and Optimisation of Flows on Networks, (2013), 271302. 

13 
R. L. Hughes, A continuum theory for the flow of pedestrians, Transportation Research Part B: Methodological, 36 (2002), 507535. 

14 
S. N. Kružhkov, First order quasilinear equations with several independent variables, Mat. Sb. (N.S.), 81 (1970), 228255. 

15 
M. J. Lighthill and G. B. Whitham, On kinematic waves. II. A theory of traffic flow on long crowded roads, Proc. Roy. Soc. London. Ser. A., 229 (1955), 317345. 

16 
S. Mishra and C. Schwab, Sparse tensor multilevel Monte Carlo finite volume methods for hyperbolic conservation laws with random initial data, Math. Comp., 81 (2012), 19792018. 

17 
P. I. Richards, Shock waves on the highway, Operations Res., 4 (1956), 4251. 

18 
M. Sabry Hassouna and A. A. Farag, Multistencils fast marching methods: A highly accurate solution to the eikonal equation on cartesian domains, IEEE Transactions on Pattern Analysis and Machine Intelligence, 29 (2007), 15631574. 

19 
Y. Sugiyama, M. Fukui, M. Kikuchi, K. Hasebe, A. Nakayama, K. Nishinari, S.i. Tadaki and S. Yukawa, Traffic jams without bottlenecksexperimental evidence for the physical mechanism of the formation of a jam, New Journal of Physics, 10 (2008), 033001. 

20 
S.i. Tadaki, M. Kikuchi, F. Minoru, A. Nakayama, K. Nishinari, A. Shibata, Y. Sugiyama, T. Yosida and S. Yukawa, Phase transition in traffic jam experiment on a circuit, New Journal of Physics, 15 (2013), 103034. 

Go to top
