`a`
Mathematical Biosciences and Engineering (MBE)
 

A note on modelling with measures: Two-features balance equations
Pages: 279 - 290, Issue 2, April 2015

doi:10.3934/mbe.2015.12.279      Abstract        References        Full text (378.6K)                  Related Articles

Michael Böhm - Center for Industrial Mathematics, University of Bremen, Bibliothekstrasse 1, D-28359 Bremen, Germany (email)
Martin Höpker - Center for Industrial Mathematics, University of Bremen, Bibliothekstrasse 1, D-28359 Bremen, Germany (email)

1 V. Agoshkov, Boundary Value Problems for Transport Equations, BirkhäuserBoston, Inc., Boston, MA, 1998.       
2 M. Böhm, Mathematical Modelling, Lecture Notes, in preparation.
3 P. R. Halmos, Measure Theory, Springer, 1974.       
4 P. M. Gschwend and M. D. Reynolds, Monodisperse ferrous phosphate colloids in an anoxic groundwater plume, Journal of Contaminant Hydrology, 1 (1987), 309-327.
5 O. Krehel, A. Muntean and P. Knabner, On Modeling and Simulation of Flocculation in Porous Media, XIX International Conference on Water Resources, CMWR, 2012.
6 A. Marzocchi and A. Musesti, Decomposition and integral representation of Cauchy interactions associated with measures, Continuum Mech. Thermodyn., 13 (2001), 149-169.       
7 A. Muntean, E. N. M. Cirillo, O. Krehel and M. Böhm, Pedestrians moving in the dark: Balancing measures and playing games on lattices, Collective Dynamics from Bacteria to Crowds, CISM International Centre for Mechanical Sciences, 553 (2014), 75-103.
8 F. Schuricht, A new mathematical foundation for contact interactions in continuum physics, Arch. Ration. Mech. Anal., 1984 (2007), 169-196.       
9 R. Segev, The geometry of Cauchy fluxes, Arch. Rational Mech. Anal., 154 (2000), 183-198.       
10 M. Šilhavý, The Mechanics and Thermodynamics of Continuous Media, Springer, Berlin, 1997.       
11 S. Slomkowski, J. Alemán, R. G. Gilbert, M. Hess, K. Horie, R. G. Jones, P. Kubisa, I. Meisel, W. Mormann, S. Penczek and R. F. T. Stepto, Terminology of polymers and polymerization processes in dispersed systems (IUPAC Recommendations 2011), Pure and Applied Chemistry, 83 (2011), 2229-2259.
12 R. Temam and A. Miranville, Mathematical Modeling in Continuum Mechanics, $2^{nd}$ edition, Cambridge University Press, 2001.       
13 C. Truesdell, A First Course in Rational Continuum Mechanics, $1^{st}$ edition, AcademicPress, Boston, 1991.       

Go to top