`a`
Mathematical Biosciences and Engineering (MBE)
 

Construction of Lyapunov functions for some models of infectious diseases in vivo: From simple models to complex models
Pages: 117 - 133, Issue 1, February 2015

doi:10.3934/mbe.2015.12.117      Abstract        References        Full text (362.1K)           Related Articles

Tsuyoshi Kajiwara - Graduate School of Environmental and Life Sciences, Okayama University, 3-1-1, Tsushima-Naka, Okayama, Japan (email)
Toru Sasaki - Graduate School of Environmental and Life Sciences, Okayama University, 3-1-1, Tsushima-Naka, Okayama, Japan (email)
Yasuhiro Takeuchi - College of Science and Engineering, Aoyama Gakuin University, 5-10-1, Fuchinobe, Sagamihara, Japan (email)

1 H. Gomez-Acevedo, M. Y. Li and J. Steven, Multistability in a model for CTL response to HTLV-I infection and its implications to HAM/TSP development and prevention, Bull. Math. Biol., 72 (2010), 681-696.       
2 G. Huang, Y. Takeuchi and W. Ma, Lyapunov functionals for delay differential equations model of viral infections, SIAM J. Appl. Math., 70 (2010), 2693-2708.       
3 A. Iggidr, J-C. Kamgang, G. Sallet and J-J. Tewa, Global analysis of new malaria intrahost models with a competitive exclusion principle, SIAM J. Appl. Math., 67 (2006), 260-278.       
4 T. Inoue, T. Kajiwara and T. Sasaki, Global stability of models of humoral immunity against multiple viral strains, J. Biol. Dyn., 4 (2010), 282-295.       
5 T. Kajiwara and T. Sasaki, Global stability of pathogen-immune dynamics with absorption, J. Biol Dyn. , 4 (2010), 258-269.       
6 T. Kajiwara, T. Sasaki and Y. Takeuchi, Construction of Lyapunov functionals for delay differential equations in virology and epidemiology, Nonl. Anal. RWA, 13 (2012), 1802-1826.       
7 A. Korobeinikov, Global properties of basic virus dynamics models, Bull. Math. Biol., 66 (2004), 879-883.       
8 A. Korobeinikov, Global properties of infectious disease model with nonlinear incidence, Bull. Math. Biol., 69 (2007), 1871-1886.       
9 M. Y. Li and Z. Shuai, Global-stability problem for coupled systems of differential equations on networks, J. Diff. Eq., 248 (2010), 1-20.       
10 J. Lang and M. Y. Li, Stable and transient periodic model for CTL response to HTLV-I infection, J. Math. Biol., 65 (2012), 181-199.       
11 A. Murase, T. Sasaki and T. Kajiwara, Stability analysis of pathogen-immune interaction dynamics, J. Math. Biol., 51 (2005), 247-267.       
12 M. A. Nowak and C. R. M. Bangham, Population dynamics of immune responses to persistent viruses, Science, 272 (1996), 74-79.
13 H. Pang, W. Wang and K. Wang, Global properties of virus dynamics with CTL immune response, Southwest China Normal Univ., 30 (2005), 797-799.
14 R. Qesmi, J. Wu, J. Wu and J. M. Heffernan, Influence of backward bifurcation in a model of hepatitis B and C virus, Math. Biosc., 224 (2010), 118-125.       

Go to top