`a`
Mathematical Biosciences and Engineering (MBE)
 

Global dynamics of a general class of multi-group epidemic models with latency and relapse
Pages: 99 - 115, Issue 1, February 2015

doi:10.3934/mbe.2015.12.99      Abstract        References        Full text (293.2K)           Related Articles

Xiaomei Feng - College of Mathematics and System Sciences, Xinjiang University, Urumqi 830046, China (email)
Zhidong Teng - College of Mathematics and System Sciences, Xinjiang University, Urumqi 830046, China (email)
Fengqin Zhang - Department of Applied Mathematics, Yuncheng University, Yuncheng 044000, Shanxi, China (email)

1 A. Berman and R. J. Plemmons, Nonnegative Matrices in the Mathematical Sciences, Academic Press, New York, 1979.       
2 N. P. Bhatia and G. P. Szegö, Dynamical Systems: Stability Theory and Applications, Lecture Notes in Math. 35, Springer, Berlin, 1967.       
3 C. Castillo-Charez, W. Huang and J. Li, Competitive exclusion in genorrhea models and other sexually transmitted diseases, SIAM J. Appl. Math., 56 (1996), 494-508.       
4 C. Castillo-Charez, W. Huang and J. Li, Competitive exclusion and coexistence of multiple strains in an SIS STD model, SIAM J. Appl. Math., 59 (1999), 1790-1811.       
5 O. Diekmann, J. A. P. Heesterbeek and J. A. J. Metz, On the definition and the computation of the basic reproduction ratio $R_0$ in models for infectious diseases in heterogeneous populations, J. Math. Biol., 28 (1990), 365-382.       
6 M. C. Eisenberg, Z. Shuai, J. H. Tien and P. van den Driessche, A cholera model in a patchy environment with water and human movement, Math. Biosci., 246 (2013), 105-112.       
7 H. I. Freedman, S. Ruan and M. Tang, Uniform persistence and flows near a closed positively invariant set, J. Dynam. Diff. Equat., 6 (1994), 583-600.       
8 F. Harary, Graph Theory, Addison-Wesley, Reading, MA, 1969.       
9 Q. Hou, Z. Jin and S. Ruan, Dynamics of rabies epidemics and the impact of control efforts in Guangdong Province, China, J. Theor. Biol., 300 (2012), 39-47.       
10 D. Gao and S. Ruan, A multipatch mararia model with logistic growth population, SIAM J. Appl. Math., 72 (2012), 819-841.       
11 L. J. Gonzalez-Montaner, S. Natal, P. Yongchaiyud and P. Olliaro, et al., Rifabutin for the treatment of newly-diagnosed pulmonary tuberculosis: a multinational, randomized, comparative study versus Rifampicin, Tuber Lung Dis., 75 (1994), 341-347.
12 H. Guo, M. Y. Li and Z. Shuai, Global stability of the endemic equilibrium of multigroup SIR epidemic models, Can. Appl. Math. Q., 14 (2006), 259-284.       
13 J. Jiang and Z. Qiu, The complete classification for dynamics in a nine-dimensional West Nile Virus model, SIAM J. Appl. Math., 69 (2009), 1205-1227.       
14 A. Y. Kim, J. Schulze zur Wiesch, T. Kuntzen , J. Timm and D. E Kaufmann, et al., Impaired Hepatitis C virus-specific T cell responses and recurrent Hepatitis C virus in HIV coinfection, PLoS Med., 3 (2006), e492.
15 A. Korobeinikov, Global properties of SIR and SEIR epidemic models with multiple parallel infectious stages, Bull. Math. Biol., 71 (2009), 75-83.       
16 A. Lajmanovich and J. A. Yorke, A deterministic model for gonorrhea in a nonhomogeneous population, Math. Biosci., 28 (1976), 221-236.       
17 M. L. Lamberta, E. Haskera, A. Van Deuna, D. Roberfroida, M. Boelaerta and P. Van der Stuyft, Recurrence in tuberculosis: Relapse or reinfection?, Lancet Infect. Dis., 3 (2003), 282-287.
18 J. P. Lasalle, The stability of dynamicals systems, Reginal Conf. Ser. Appl., SIAM, Philadelphia, 1976.       
19 M. Y. Li, J. R. Graef, L. Wang and J. Karsai, Global dynamics of a SEIR model with varying total population size, Math. Biosci., 160 (1999), 191-213.       
20 M. Y. Li, Z. Shuai and C. Wang, Global stability of multi-group epidemic models with distributed delays, J. Math. Anal. Appl., 361 (2010), 38-47.       
21 M.Y. Li and Z. Shuai, Global-stability problem for coupled systems of differential equations on networks, J. Diff. Equat., 248 (2010), 1-20.       
22 S. Liu and L. Wang, Global stability of an HIV-1 model with distributed intracellular delays and a combination therapy, Math. Biosci. Eng., 7 (2010), 675-685.       
23 S. Liu, S. Wang and L. Wang, Global dynamics of delay epidemic models with nonlinear incidence rate and relapse, Nonlinear Anal. Real World Appl., 12 (2011), 119-127.       
24 A. Marzano, S. Gaia, V. Ghisetti, S. Carenzi and A. Premoli, et al., Viral load at the time of liver transplantation and risk of hepatitis B virus recurrence, Liver Transpl., 11 (2005), 402-409.
25 Y. Muroya, Y. Enatsu and T. Kuniya, Global stability for a multi-group SIRS epidemic model with varying population sizes, Nonlinear Anal. Real World Appl., 14 (2013), 1693-1704.       
26 H. Shu, D. Fan and J. Wei, Global stability of multi-group SEIR epidemic models with distributed delays and nonlinear transmission, Nonlinear Anal. Real World Appl., 13 (2012), 1581-1592.       
27 Z. Shuai and P. van den Driessche, Global dynamics of cholera models with differential infectivity, Math. Biosci., 234 (2011), 118-126.       
28 Z. Shuai and P. van den Driessche, Impact of heterogeneity on the dynamics of an SEIR epidemic model, Math. Biosci. Eng., 9 (2012), 393-411.       
29 Z. Shuai and P. van den Driessche, Global stability of infectious disease models using Lyapunov functious, SIAM J. Appl. Math., 73 (2013), 1513-1532.       
30 H. L. Smith and P. Waltman, The Theory of the Chemostat: Dynamics of Microbial Competition, Cambridge University Press, Cambridge, UK, 1995.       
31 P. Sonnenberg, J. Murray, J. R Glynn, S. Shearer and B. Kambashi, et al., HIV-1 and recurrence, relapse, and reinfection of tuberculosis after cure: a cohort study in South African mineworkers, Lancet, 358 (2001), 1687-1693.
32 R. Sun and J. Shi, Global stability of multigroup epidemic model with group mixing and nonlinear incidence rates, Appl. Math. Comput., 218 (2011), 280-286.       
33 A. R. Tuite, J. H. Tien, M. Eisenberg, D. J. D. Earn and J. Ma, et al., Cholera epidemic in Haiti, 2010: Using a transmission model to explain spatial spread of disease and identify optimal control interventions, Ann. Internal Med., 154 (2011), 593-601.
34 P. van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29-48.       
35 P. van den Driessche, L. Wang and X. Zou, Modeling disease with latencecy and relapse, Math. Biosci. Eng., 4 (2007), 205-219.       
36 P. van den Driessche and X. Zou, Modeling relapse in infectious disease, Math. Biosci., 207 (2007), 89-103.       
37 Y. Yuan and J. Bélair, Threshold dynamics in an SEIRS model with latency and temporary immunity, J. Math. Biol., 69 (2014), 875-904.       
38 J. Zhang, Z. Jin, G. Sun, X. Sun and S. Ruan, Modeling seasonal Rabies epidemics in china, Bull. Math. Biol., 74 (2012), 1226-1251.       

Go to top