Mathematical Biosciences and Engineering (MBE)

A singularly perturbed HIV model with treatment and antigenic variation
Pages: 1 - 21, Issue 1, February 2015

doi:10.3934/mbe.2015.12.1      Abstract        References        Full text (865.5K)           Related Articles

Nara Bobko - Instituto Nacional de Matemática Pura e Aplicada, Rio do Janeiro, RJ 22460-320, Brazil (email)
Jorge P. Zubelli - Instituto Nacional de Matemática Pura e Aplicada, Rio do Janeiro, RJ 22460-320, Brazil (email)

1 R. M. Anderson and R. M. May, Epidemiological parameters of HIV transmission, Nature, 333 (1988), 514-519.
2 B. Asquith and C. R. M. Bangham, Review. An introduction to lymphocyte and viral dynamics: The power and limitations of mathematical analysis, Proceedings of the Royal Society of London. Series B: Biological Sciences, 270 (2003), 1651-1657.
3 J. Banasiak, E. K. Phongi and M. Lachowicz, A singularly perturbed sis model with age structure, Mathematical Biosciences and Engineering, 10 (2013), 499-521.       
4 N. Bobko, Estabilidade de Lyapunov e propriedades globais para modelos de dinâmica viral, (2010).
5 S. Bonhoeffer, R. M. May, G. M. Shaw and M. A. Nowak, Virus dynamics and drug therapy, Proceedings of the National Academy of Sciences, 94 (1997), 6971-6976.
6 L. N. Cooper, Theory of an immune system retrovirus, Proceedings of the National Academy of Sciences, 83 (1986), 9159-9163.       
7 M. L. B. M. F. E. S. Sumikawa, L. R. da Motta and O. da C. F. Junior, Manual Técnico Para O Diagnóstico da Infecção Pelo HIV, Ministério da Saúde, 2013.
8 N. Fenichel, Geometric singular perturbation theory for ordinary differential equations, Journal of Differential Equations, 31 (1979), 53-98.       
9 S. D. W. Frost and A. R. McLean, Germinal centre destruction as a major pathway of HIV pathogenesis, JAIDS Journal of Acquired Immune Deficiency Syndromes, 7 (1994), 236-244.
10 J. B. Gilmore, A. D. Kelleher, D. A. Cooper and J. M. Murray, Explaining the determinants of first phase HIV decay dynamics through the effects of stage-dependent drug action, PLoS computational biology, 9 (2013), e1002971, 12 pp.       
11 N. Gulzar and K. F. T. Copeland, Cd8+ T-cells: Function and response to HIV infection, Current HIV research, 2 (2004), 23-37.
12 D. D. Ho, A. U. Neumann, A. S. Perelson, W. Chen, J. M. Leonard and M. Markowitz, et al., Rapid turnover of plasma virions and CD4 lymphocytes in HIV-1 infection, Nature, 373 (1995), 123-126.
13 J. Hofbauer and K. Sigmund, Evolutionary Games and Population Dynamics, Cambridge University Press, 1998.       
14 J. Kevorkian and J. D. Cole, Multiple Scale and Singular Perturbation Methods, vol. 114, Springer New York, 1996.       
15 D. Kirschner, Using mathematics to understand HIV immune dynamics, AMS notices, 43 (1996), 191-202.       
16 A. Korobeinikov, Global properties of basic virus dynamics models, Bulletin of Mathematical Biology, 66 (2004), 879-883.       
17 A. L. Lloyd, The dependence of viral parameter estimates on the assumed viral life cycle: Limitations of studies of viral load data, Proceedings of the Royal Society of London. Series B: Biological Sciences, 268 (2001), 847-854.
18 J. M. McCune, M. B. Hanley, D. Cesar, R. Halvorsen, R. Hoh, D. Schmidt, E. Wieder, S. Deeks, S. Siler and R. Neese, et al., Factors influencing T-cell turnover in HIV-1 seropositive patients, Journal of Clinical Investigation, 105 (2000), R1-R8.
19 M. L. Munier and A. D. Kelleher, Acutely dysregulated, chronically disabled by the enemy within: T-cell responses to HIV-1 infection, Immunology and cell biology, 85 (2006), 6-15.
20 P. W. Nelson and A. S. Perelson, Mathematical analysis of delay differential equation models of HIV-1 infection, Mathematical Biosciences, 179 (2002), 73-94.       
21 M. Nowak and R. M. May, Virus Dynamics: Mathematical Principles of Immunology and Virology, Oxford University Press, 2000.       
22 M. A. Nowak and C. R. M. Bangham, Population dynamics of immune responses to persistent viruses, Science, 272 (1996), 74-79.
23 Joint United Nations Programme on HIV/AIDS (UNAIDS), Global Report: Unaids Report on the Global AIDS Epidemic 2012, (2012).
24 S. A. Orszag and C. M. Bender, Advanced Mathematical Methods for Scientists and Engineers, Mac Graw Hill, 1978.       
25 D. H. Pastore, A Dinamica do HIV no Sistema Imunológico na Presença de Mutação, Ph.D. thesis, IMPA, 2005.
26 A. S. Perelson, D. E. Kirschner and R. De Boer, Dynamics of HIV infection of CD4+ T cells, Mathematical biosciences, 114 (1993), 81-125.
27 A. S. Perelson and P. W. Nelson, Mathematical analysis of HIV-1 dynamics in vivo, SIAM review, 41 (1999), 3-44.       
28 T. C. Quinn, HIV viral load, The Hopkins HIV Report, 8 (1996), no. 3.
29 A. Rambaut, D. Posada, K. A. Crandall and E. C. Holmes, The causes and consequences of HIV evolution, Nature Reviews Genetics, 5 (2004), 52-61.
30 D. L. Robertson, B. H. Hahn and P. M. Sharp, Recombination in AIDS viruses, Journal of molecular evolution, 40 (1995), 249-259.
31 M. A. Sande and P. A. Volberding, et al., The Medical Management of AIDS, no. Ed. 4, WB Saunders, 1995.
32 N. Siewe, The Tikhonov Theorem in Multiscale Modelling: An Application to the SIRS Epidemic Model, Ph.D. thesis, AIMS, 2012.
33 V. Simon and D. D. Ho, HIV-1 dynamics in vivo: Implications for therapy, Nature Reviews Microbiology, 1 (2003), 181-190.
34 H. L. Smith and P. D. Leenheer, Virus dynamics: A global analysis, SIAM Journal on Applied Mathematics, 63 (2003), 1313-1327.       
35 M. Somasundaran and H. L. Robinson, Unexpectedly high levels of HIV-1 RNA and protein synthesis in a cytocidal infection, Science, 242 (1988), 1554-1557.
36 M. O. Souza, Multiscale analysis for a vector-borne epidemic model, Journal of mathematical biology, 68 (2014), 1269-1293.       
37 M. O Souza and J. P. Zubelli, Global stability for a class of virus models with cytotoxic T lymphocyte immune response and antigenic variation, Bull. Math. Biol., 73 (2011), 609-625.       
38 M. A Stafford, L. Corey, Y. Cao, E. S. Daar, D. D. Ho and A. S. Perelson, Modeling plasma virus concentration during primary HIV infection, Journal of Theoretical Biology, 203 (2000), 285-301.
39 P. Szmolyan, Transversal heteroclinic and homoclinic orbits in singular perturbation problems, Journal of differential equations, 92 (1991), 252-281.       
40 A. N. Tikhonov, A. B. Vasileva and A. G. Sveshnikov, Differential Equations, Springer-Verlag Berlin, 1984.       
41 A. B. Vasileva and V. F. Butuzov, Asimptoticheskie Metody v Teorii Singulyarnykh Vozmushchenij, Moskva: Vysshaya Shkola, 1990 (Russian).       
42 X. Wang and X. Song, Global properties of a model of immune effector responses to viral infections, Advances in Complex Systems, 10 (2007), 495-503.       
43 W. Wasow, Asymptotic Expansions for Ordinary Differential Equations, Dover Publications, Inc., New York, 1987.       
44 World Health Organization (WHO), Global Update on HIV Treatment 2013: Results, Impact and Opportunities, (2013).

Go to top