`a`
Journal of Modern Dynamics (JMD)
 

Every action of a nonamenable group is the factor of a small action
Pages: 251 - 270, Issue 2, June 2014

doi:10.3934/jmd.2014.8.251      Abstract        References        Full text (228.9K)           Related Articles

Brandon Seward - Department of Mathematics, University of Michigan, 530 Church Street, Ann Arbor, MI 48109, United States (email)

1 K. Ball, Factors of independent and identically distributed processes with non-amenable group actions, Ergodic Theory Dynam. Systems, 25 (2005), 711-730.       
2 L. Bowen, A measure-conjugacy invariant for free group actions, Ann. of Math. (2), 171 (2010), 1387-1400.       
3 L. Bowen, Weak isomorphisms between Bernoulli shifts, Israel J. Math., 183 (2011), 93-102.       
4 L. Bowen, Every countably infinite group is almost Ornstein, in Dynamical Systems and Group Actions, Contemp. Math., 567, Amer. Math. Soc., Providence, RI, 2012, 67-78.       
5 I. Epstein, Orbit inequivalent actions of non-amenable groups, preprint, arXiv:0707.4215.
6 D. Gaboriau, Coût des relations d'équivalance et des groupes, Invent. Math., 139 (2000), 41-98.       
7 D. Gaboriau and R. Lyons, A measurable-group-theoretic solution to von Neumann's problem, Invent. Math., 177 (2009), 533-540.       
8 A. Kechris, Classical Descriptive Set Theory, Graduate Texts in Mathematics, 156, Springer-Verlag, New York, 1995.       
9 A. Kechris, Weak containment in the space of actions of a free group, Israel J. Math., 189 (2012), 461-507.       
10 D. Kerr and H. Li, Soficity, amenability, and dynamical entropy, Amer. J. Math., 135 (2013), 721-761.       
11 D. Ornstein and B. Weiss, Entropy and isomorphism theorems for actions of amenable groups, J. Analyse Math., 48 (1987), 1-141.       
12 B. Seward, Burnside's problem, spanning trees, and tilings, to appear in Geometry & Topology.
13 J. Silver, Counting the number of equivalence classes of Borel and coanalytic equivalence relations, Ann. Math. Logic, 18 (1980), 1-28.       
14 A. M. Stepin, Bernoulli shifts on groups, Dokl. Akad. Nauk SSSR, 223 (1975), 300-302.       
15 B. Weiss, Measurable dynamics, in Conference in Modern Analysis and Probability (eds. R. Beals, et. al.), Contemporary Mathematics, 26, American Mathematical Society, Providence, RI, 1984, 395-421.       
16 K. Whyte, Amenability, bi-Lipschitz equivalence, and the von Neumann conjecture, Duke Math. J., 99 (1999), 93-112.       

Go to top