`a`
Journal of Industrial and Management Optimization (JIMO)
 

Barzilai-Borwein-like methods for the extreme eigenvalue problem
Pages: 999 - 1019, Issue 3, July 2015

doi:10.3934/jimo.2015.11.999      Abstract        References        Full text (923.5K)           Related Articles

Huan Gao - College of Applied Sciences, Beijing University of Technology, Beijing 100124, China (email)
Yu-Hong Dai - State Key Laboratory of Scientific and Engineering Computing, Institute of Computational Mathematics and Scientific/Engineering Computing, AMSS, Chinese Academy of Sciences, Beijing 100190, China (email)
Xiao-Jiao Tong - Hunan Province Key Laboratory of Smart Grids Operation and Control, Changsha University of Science and Technology, Changsha 410004, Hunan Province, China (email)

1 G. Auchmuty, Unconstrained variational principles for eigenvalues of real symmetric matrices, SIAM J. Math. Anal., 20 (1989), 1186-1207.       
2 J. Barzilai and J. M. Borwein, Two point step size gradient methods, IMA Journal of Numerical Analysis, 8 (1988), 141-148.       
3 Z. Bai, J. Dongarra, A. Ruhe and H. van der Vorst, Templates for the Solution of Algebraic Eigenvalue Problems: A Practical Guide, SIAM, Philadelphia, 2000.       
4 J. K. Cullum and R. A. Willoughby, Lanczos Algorithms for Large Symmetric Eigenvalue, the United States of America: SIAM, 1985.
5 Y. H. Dai, On the nonmonotone line search, Journal of Optimization Theory and Applications, 112 (2002), 315-330.       
6 Y. H. Dai and R. Fletcher, Projected Barzilai-Borwein methods for large-scale box-constrained quadratic programming, Numerische Mathematik, 100 (2005), 21-47.       
7 Y. H. Dai, W. W. Hager, K. Schittkowski and H. C. Zhang, The cycle Barzilai-Borwein method for unconstrained optimization, IMA Journal of Numerical Analysis, 26 (2006), 604-627.       
8 Y. H. Dai and C. X. Kou, A nonlinear conjugate gradient algorithm with an optimal property and an improved Wolfe line search, SIAM Journal on Optimization, 23 (2013), 296-320.
9 Y. H. Dai and L. Z. Liao, $R$-linear convergence of the Barzilai and Borwein gradient method, IMA Journal of Numerical Analysis, 22 (2002), 1-10.       
10 Y. H. Dai and H. C. Zhang, Adaptive two-point stepsize gradient algorithm, Numerical Algorithms, 27 (2001), 377-385.       
11 T. A. Davis and Y. H. Hu, The University of Florida Sparse Matrix Collection, University of Florida, ACM Transactions on Mathematical Software, 2011.
12 E. D. Dolan and J. J. MorĂ©, Benchmarking optimization software with performance profiles, Mathematical Programming Series A, 91 (2002), 201-213.       
13 R. Fletcher, On the Barzilai-Borwein method, in Optimization and Control with Applications (eds. L.Q. Qi, K.L. Teo and X.Q. Yang), 96 (2005), 235-256.       
14 L. Grippo, F. Lampariello and S. Lucidi, A nonmonotone line search technique for Newton's method, SIAM Journal on Numerical Analysis, 23 (1986), 707-716.       
15 G. H. Golub and C. F. Van Loan, Matrix computation, $3^{nd}$ edition, John Hopkins University Press, Baltimore, MD, 1996.
16 W. W. Hager and H. Zhang, A new conjugate gradient method with guaranteed descent and an efficient line search, SIAM Journal on Optimization, 16 (2005), 170-192.       
17 B. Jiang and Y. H. Dai, Feasible Barzilai-Borwein-like methods for extreme symmetric eigenvalue problems, Optimization Methods and Software, 28 (2013), 756-784.       
18 M. Mongeau and M. Torki, Computing eigenelements of real symmetric matrices via optimization, Computational Optimization and Applications, 29 (2004), 263-287.       
19 M. Raydan, On the Barzilai and Borwein of steplength for gradient method, IMA Journal of Numerical Analysis, 13 (1993), 321-326.       
20 Y. Saad, Numerical Methods for Large Eigenvalue Problems, Manchester University: The Society of Industrial and Applied Mathematics, 2011.
21 A. H. Sameh and J. A. Wisniewski, A trace minimization algorithm for the generalized eigenvalue problem computations, SIAM Journal on Numerical Analysis, 19 (1982), 1243-1259.       
22 P. L. Toint, Non-monotone trust-region algorithms for nonlinear optimization subject to convex constraints, Mathematical Programming, 77 (1997), 69-94.       
23 H. C. Zhang and W. W. Hager, PACBB: A projected adaptive CBB (PACBB) method for box constrained optimization, Nonconvex Optimization and Its Applications, 82 (2006), 387-392.
24 B. Zhou, L. Gao and Y. H. Dai, Gradient methods with adaptive step sizes, Computation Optimization and Applications, 35 (2006), 69-86.       

Go to top