Discrete and Continuous Dynamical Systems - Series B (DCDS-B)

Evolution of mobility in predator-prey systems
Pages: 3397 - 3432, Issue 10, December 2014

doi:10.3934/dcdsb.2014.19.3397      Abstract        References        Full text (3194.4K)           Related Articles

Fei Xu - Department of Mathematics, Wilfrid Laurier University, Waterloo, Ontario, N2L 3C5, Canada (email)
Ross Cressman - Department of Mathematics, Wilfrid Laurier University, Waterloo, Ontario, N2L 3C5, Canada (email)
Vlastimil Křivan - Biology Centre ASCR, Institute of Entomology and Department of Mathematics and Biomathematics, Faculty of Science, University of South Bohemia, Branišovská 31, 370 05 České Budějovice, Czech Republic (email)

1 P. A. Abrams, Foraging time optimization and interactions in food webs, Am Nat, 124 (1984), 80-96.
2 P. A. Abrams, The impact of habitat selection on the heterogeneity of resources in varying environments, Ecol, 81 (2000), 2902-2913.
3 P. A. Abrams, Habitat choice in predator-prey systems: Spatial instability due to interacting adaptive movements, Am Nat, 169 (2007), 581-594.
4 P. A. Abrams, R. Cressman and V. Křivan, The role of behavioral dynamics in determining the patch distributions of interacting species, Am Nat, 169 (2007), 505-518.
5 K. Argasinski, Dynamic multipopulation and density dependent evolutionary games related to replicator dynamics. A metasimplex concept, Math Biosci, 202 (2006), 88-114.       
6 L. Arnold, W. Horsthemke and J. W. Stucki, The influence of external real and white noise on the Lotka-Volterra model, Biom. J., 21 (1979), 451-471.       
7 J. S. Brown and B. P. Kotler, Hazardous duty pay and the foraging cost of predation, Ecol Lett, 7 (2004), 999-1014.
8 J. S. Brown, J. W. Laundré and M. Gurung, The ecology of fear: Optimal foraging, game theory, and trophic interactions, J Mammal, 80 (1999), 385-399.
9 E. L. Charnov, Optimal foraging: Attack strategy of a mantid, Am Nat, 110 (1976), 141-151.
10 R. Cressman, Evolutionary Dynamics and Extensive Form Games, MIT Press, Cambridge, MA, USA, 2003.       
11 R. Cressman and J. Garay, The effects of opportunistic and intentional predators on the herding behavior of prey, Ecol, 92 (2011), 432-440.
12 R. Cressman and V. Křivan, Two-patch population models with adaptive dispersal: The effects of varying dispersal speeds, J Math Biol, 67 (2013), 329-358.       
13 M. M. Dehn, Vigilance for predators: Detection and dilution effects, Behav. Ecol. Sociobiol., 26 (1990), 337-342.
14 F. Dercole and S. Rinaldi, Analysis of Evolutionary Processes, Princeton University Press, Princeton, USA, 2008.       
15 U. Dieckmann and R. Law, The dynamical theory of coevolution: A derivation from stochastic ecological processes, J. Math. Biol., 34 (1996), 579-612.       
16 W. A. Foster and J. E. Treherne, Evidence for the dilution effect in the selfish herd from fish predation on a marine insect, Nature, 293 (1981), 466-467.
17 D. Fudenberg and D. K. Levine, The Theory of Learning in Games, MIT Press, Cambridge, MA, USA, 1998.       
18 G. F. Gause, The Struggle for Existence, Williams and Wilkins, Baltimore, 1934.
19 S. A. H. Geritz, É. Kisdi, G. Meszéna and J. A. J. Metz, Evolutionarily singular strategies and the adaptive growth and branching of the evolutionary tree, Evol. Ecol., 12 (1998), 35-57.
20 J. Hofbauer and E. Hopkins, Learning in perturbed asymmetric games, Games Econ Behav, 52 (2005), 133-152.       
21 J. Hofbauer and K. Sigmund, The Theory of Evolution and Dynamical Systems, Cambridge University Press, Cambridge, 1988.       
22 J. Hofbauer and K. Sigmund, Evolutionary Games and Population Dynamics, Cambridge University Press, Cambridge, 1998.       
23 C. S. Holling, Some characteristics of simple types of predation and parasitism, Can. Entomol., 91 (1959), 385-398.
24 R. Huey and E. R. Pianka, Ecological consequences of foraging mode, Ecol, 62 (1981), 991-999.
25 V. Křivan, Optimal foraging and predator-prey dynamics, Theor Popul Biol, 49 (1996), 265-290.
26 V. Křivan, The Lotka-Volterra predator-prey model with foraging-predation risk trade-offs, Am Nat, 170 (2007), 771-782.
27 V. Křivan and E. Sirot, Habitat selection by two competing species in a two-habitat environment, Am Nat, 160 (2002), 214-234.
28 J. H. Lü, G. R. Chen and S. C. Zhang, Dynamical analysis of a new chaotic attractor, Int. J. Bifur. Chaos Appl. Sci. Eng., 12 (2002), 1001-1015.
29 R. H. MacArthur and E. R. Pianka, On optimal use of a patchy environment, Am Nat, 100 (1966), 603-609.
30 M. Parker and A. Kamenev, Mean extinction time in predator-prey model, J Stat Phys, 141 (2010), 201-216.       
31 M. L. Rosenzweig and R. H. MacArthur, Graphical representation and stability conditions of predator-prey interactions, Am Nat, 97 (1963), 209-223.
32 L. Samuelson and J. Zhang, Evolutionary stability in asymmetric games, J. Econ. Theory, 57 (1992), 363-391.       
33 I. Scharf, E. Nulman, O. Ovadia and A. Bouskila, Efficiency evaluation of two competing foraging modes under different conditions, Am Nat, 168 (2006), 350-357.
34 O. J. Schmitz, Behavior of predators and prey and links with population level processes. In Ecology of Predator-Prey Interactions (eds. P. Barbosa and I. Castellanos ), 256-278, Oxford University Press, 2005.
35 O. J. Schmitz, V. Křivan and O. Ovadia, Trophic cascades: The primacy of trait-mediated indirect interactions, Ecol Lett, 7 (2004), 153-163.
36 T. W. Schoener, Theory of feeding strategies, Annu Rev Ecol Syst, 2 (1971), 369-404.
37 J. G. Skellam, The mathematical foundations underlying the use of line transects in animal ecology, Biometrics, 14 (1958), 385-400.
38 D. W. Stephens and J. R. Krebs, Foraging Theory, Princeton University Press, Princeton, New Jersey, USA, 1986.
39 T. L. Vincent and J. S. Brown, Evolutionary Game Theory, Natural Selection, and Darwinian Dynamics, Cambridge University Press, Cambridge, UK, 2005.
40 E. E. Werner and B. R. Anholt, Ecological consequences of the trade-off between growth and mortality rates mediated by foraging activity, Am Nat, 142 (1993), 242-272.
41 W. B. Yapp, The theory of line transects, Bird Study, 3 (1956), 93-104.

Go to top