`a`
Discrete and Continuous Dynamical Systems - Series B (DCDS-B)
 

Optimal migratory behavior in spatially-explicit seasonal environments
Pages: 3359 - 3378, Issue 10, December 2014

doi:10.3934/dcdsb.2014.19.3359      Abstract        References        Full text (957.4K)           Related Articles

Timothy C. Reluga - Department of Mathematics, Penn State University, University Park, PA 16802, United States (email)
Allison K. Shaw - Division of Evolution, Ecology, and Genetics, The Australian National University, Canberra ACT 0200, Australia (email)

1 T. Alerstam, A. Hedenström and S. Åkesson, Long-distance migration: Evolution and determinants, Oikos, 103 (2003), 247-260.
2 R. M. Alexander, When is migration worthwhile for animals that walk, swim or fly?, Journal of Avian Biology, 29 (1998), 387-394.
3 M. Bulmer, Theoretical Evolutionary Ecology, Sinauer, Sunderland, MA, 1994.
4 R. S. Cantrell, C. Cosner, D. L. Deangelis and V. Padron, The ideal free distribution as an evolutionarily stable strategy, Journal of Biological Dynamics, 1 (2007), 249-271.       
5 R. S. Cantrell, C. Cosner and Y. Lou, Approximating the ideal free distribution via reaction-diffusion-advection equations, Journal of Differential Equations, 245 (2008), 3687-3703.       
6 S. Cantrell, C. Cosner and Y. Lou, Evolution of dispersal in heterogeneous landscapes, in Spatial Ecology (eds. S. Cantrell, C. Cosner, and S. Ruan), Chapman and Hall, (2009), 213-229.
7 C. W. Clark, Mathematical Bioeconomics, John Wiley & Sons, Inc., Hoboken, NJ, 2010.       
8 D. Cohen, Optimization of seasonal migratory behavior, American Naturalist, 101 (1967), 5-17.
9 K. A. Cresswell, W. H. Satterthwaite and G. A. Sword, Understanding the evolution of migration through empirical examples, in Animal migration: A synthesis, Oxford University Press, New York, (2011), 7-16.
10 D. L. DeAngelis, G. S. Wolkowicz, Y. Lou, Y. Jiang, M. Novak, R. Svanbäck, M. S. Araujo, Y. S. Jo and E. A. Cleary, The effect of travel loss on evolutionarily stable distributions of populations in space, The American Naturalist, 178 (2011), 15-29.
11 H. Dingle, Ecology and evolution of migration, in Animal migration, orientation and navigation (ed. S. A. Gauthreaux), (1980), 1-101.
12 H. Dingle and V. A. Drake, What is migration?, Bioscience, 57 (2007), 113-121.
13 S. D. Fretwell and H. L. Lucas, On territorial behavior and other factors influencing habitat distribution in birds, Acta Biotheoretica, 19 (1969), 37-44.
14 J. M. Fryxell, E. Milner-Gulland and A. R. Sinclair, Introduction, in Animal migration: A synthesis, Oxford University Press, New York, (2011), 1-3.
15 N. J. Gales, A. J. Cheal, G. J. Pobar and P. Williamson, Breeding biology and movements of Australian sea-lions, Neophoca cinerea, off the west coasst of Western Australia, Wildlife Research, 19 (1992), 405-415,
16 A. M. Hein, C. Hou and J. F. Gillooly, Energetic and biomechanical constraints on animal migration distance, Ecology letters, 15 (2012), 104-110.
17 D. E. Hiebeler and B. R. Morin, The effect of static and dynamic spatially structured disturbances on a locally dispersing population, Journal of Theoretical Biology, 246 (2007), 136-144.       
18 R. D. Holt and J. M. Fryxell, Theoretical reflections on the evolution of migration, in Animal migration: A synthesis (eds. E. Milner-Gulland, J. M. Fryxell, and A. R. Sinclair), Oxford University Press, New York, NY, 17-31.
19 J. D. Hunter, Matplotlib: A 2d graphics environment, Computing In Science & Engineering, 9 (2007), 90-95.
20 E. Jones, T. Oliphant and P. Peterson, et al., SciPy: Open source scientific tools for Python (2001), http://www.scipy.org/.
21 A. Kaitala, V. Kaitala and P. Lundberg, A theory of partial migration, American Naturalist, 142 (1993), 59-81.
22 I. Kovacic and M. J. Brennan, The Duffing Equation: Nonlinear Oscillators and Their Behaviour, Wiley, 1 edition, 2011.       
23 S. Lenci and G. Rega, Forced harmonic vibration in a Duffing oscillator with negative linear stiffness and linear viscous damping, in The Duffing Equation: Nonlinear Oscillators and their Behaviour (eds. I. Kovacic and M. J. Brennan), Wiley, (2011), 219-276.       
24 S. Lenhart and J. T. Workman, Optimal Control Applied to Biological Models, Chapman & Hall/CRC, 2007.       
25 P. Lundberg, Partial bird migration and evolutionarily stable strategies, Journal of Theoretical Biology, 125 (1987), 351-360.
26 J. M. McNamara, A. I. Houston and E. J. Collins, Optimality models in behavioral biology, SIAM Review, 43 (2001), 413-466.       
27 B. H. McRae, B. G. Dickson, T. H. Keitt, and V. B. Shah, Using Circuit Theory to Model Connectivity in Ecology, Evolution, and Conservation, Ecology, 89 (2008), 2712-2724.
28 A. Mertz and W. Slough, Graphics with pgf and tikz, PracTeX Journal, 1, http://www.tug.org/TUGboat/tb28-1/tb88mertz.pdf.
29 T. Mueller and W. F. Fagan, Search and navigation in dynamic environments-from individual behaviors to population distributions, Oikos, 117 (2008), 654-664.
30 R. Nathan, An emerging movement ecology paradigm, Proceedings of the National Academy of Sciences, 105 (2008), 19050-19051.
31 R. Nathan, W. M. Getz, E. Revilla, M. Holyoak, R. Kadmon, D. Saltz and P. E. Smouse, A movement ecology paradigm for unifying organismal movement research, Proceedings of the National Academy of Sciences, 105 (2008), 19052-19059.
32 A. H. Nayfeh and D. T. Mook, Nonlinear Oscillations, Wiley, New York, 1995.       
33 C. J. Pennycuick, The mechanics of bird migration, Ibis, 111 (1969), 525-556.
34 Python Software Foundation, Python Language Reference, version 2.7 (2010), http://www.python.org.
35 T. C. Reluga, J. Medlock and A. P. Galvani, The discounted reproductive number for epidemiology, Mathematical Biosciences and Engineering, 6 (2009), 377-393.       
36 D. E. Schindler, R. Hilborn, B. Chasco, C. P. Boatright, T. P. Quinn, L. A. Rogers and M. S. Webster, Population diversity and the portfolio effect in an exploited species, Nature, 465 (2010), 609-612.
37 A. K. Shaw and S. A. Levin, To breed or not to breed: A model of partial migration, Oikos, 120 (2011), 1871-1879.
38 A. K. Shaw and I. D. Couzin, Migration or residency? the evolution of movement behavior and information usage in seasonal environments, The American Naturalist, 181 (2013), 114-124.
39 A. K. Shaw and S. A. Levin, The evolution of intermittent breeding, Journal of Mathematical Biology, 66 (2013), 685-703,       
40 S. C. Stearns, The Evolution of Life Histories, Oxford University Presss, Oxford, UK, 1992.
41 SymPy Development Team, SymPy: Python library for symbolic mathematics, 2013, http://www.sympy.org.
42 W. Szempli'nska-Stupnicka and K. L. Janicki, Basin boundary bifurcations and boundary crisis in the twin-well Duffing oscillator: Scenarios related to the saddle of the large resonant orbit, International Journal of Bifurcation and Chaos, 07 (1997), 129-146.       
43 H. R. Thieme, Spectral bound and reproduction number for infinite-dimensional population structure and time heterogeneity, SIAM Journal on Applied Mathematics, 70 (2009), 188-211.       
44 J. M. T. Thompson and H. B. Stewart, Nonlinear Dynamics and Chaos, John Wiley and Sons, New York, 2002.       
45 J. M. Travis and C. Dytham, Habitat persistence, habitat availability and the evolution of dispersal, Proceedings of the Royal Society of London. Series B: Biological Sciences, 266 (1999), 723-728.
46 P. Wiener and S. Tuljapurkar, Migration in variable environments: Exploring life-history evolution using structured population models, Journal of Theoretical Biology, 166 (1994), 75-90.
47 T. Williams, C. Kelley and {many others}, Gnuplot 4.4: an interactive plotting program, http://gnuplot.sourceforge.net/ (2010).
48 S. Wright, Evolution and the Genetics of Populations, Volume 2: Theory of Gene Frequencies, University Of Chicago Press, 1969.

Go to top