Global analysis of within host virus models with celltocell viral transmission
Pages: 3341  3357,
Issue 10,
December
2014
doi:10.3934/dcdsb.2014.19.3341 Abstract
References
Full text (442.8K)
Related Articles
Hossein Pourbashash  Department of Mathematics, University of Florida, 1400 Stadium Road, Gainesville, FL 32611, United States (email)
Sergei S. Pilyugin  Department of Mathematics, University of Florida, 1400 Stadium Road, Gainesville, FL 32611, United States (email)
Patrick De Leenheer  Department of Mathematics, University of Florida, 1400 Stadium Road, Gainesville, FL 32611, United States (email)
Connell McCluskey  Department of Mathematics, Wilfrid Laurier University, 75 University Avenue West, Waterloo, ON, N2L 3C5, Canada (email)
1 
W. A. Coppel, Stability and Asymptotic Behavior of Differential Equations, Heath and Co., Boston, 1965. 

2 
P. De Leenheer and H. L. Smith, Virus dynamics: A global analysis, SIAM J. Appl. Math., 63 (2003), 13131327. 

3 
P. De Leenheer and S. S. Pilyugin, Multistrain virus dynamics with mutations: A global analysis, Math. Med. Biol., 25 (2008), 285322. 

4 
N. Dixit and A. Perelson, Multiplicity of human immunodeficiency virus infections in lymphoid tissue, J. Virol., 78 (2004), 89428945. 

5 
M. Fiedler, Additive compound matrices and inequality for eigenvalues of stochastic matrices, Czech. Math. J., 24 (1974), 392402. 

6 
H. I. Freedman, M. X. Tang and S. G. Ruan, Uniform persistence and flows near a closed positively invariant set, J. Dynam. Differential Equations, 6 (1994), 583600. 

7 
H. K. Khalil, Nonlinear Systems, 3rd Edition, Prentice Hall, 2002. 

8 
A. Korobeinikov, Global properties of SIR and SEIR epidemic models with multiple parallel infectious stages, Bull. Math. Biol., 71 (2009), 7583. 

9 
M. Y. Li, J. R. Graef, L. Wang and J. Karsai, Global dynamics of a SEIR model with varying total population size, Math. Biosci., 160 (1999), 191213. 

10 
M. Y. Li and J. S. Muldowney, A geometric approach to the globalstability problems, SIAM J. Math. Anal., 27 (1996), 10701083. 

11 
M. Y. Li and J. S. Muldowney, Global stability for the SEIR model in epidemiology, Math. Biosci., 125 (1995), 155164. 

12 
R. H. Jr. Martin, Logarithmic norms and projections applied to linear differential systems, J. Math. Anal. Appl., 45 (1974), 432454. 

13 
D. Mazurov, A. Ilinskaya, G. Heidecker, P. Lloyd and D. Derse, Quantitative comparison of HTLV1 and HIV1 Cellto Cell infection with new replication dependent vectors, PLoS Pathogens, 6 (2010), e1000788. 

14 
B. Monel, E. Beaumont, D. Vendrame, O. Schwartz, D. Brand and F. Mammano, HIV celltocell transmission requires the production of infectious virus particles and does not proceed through Envmediated fusion pores, J. Virol., 86 (2012), 39243933. 

15 
J. S. Muldowney, Compound matrices and ordinary differential equations, Rocky Mount. J. Math., 20 (1990), 857872. 

16 
M. A. Nowak and R. M. May, Virus Dynamics, Oxford University press, New York, 2000. 

17 
A. S. Perelson and P. W. Nelson, Mathematical analysis of HIV1 dynamics in vivo, SIAM Rev., 41 (1999), 344. 

18 
V. Piguet and Q. Sattentau, Dangerous liaisons at the virological synapse, J. Clin. Invest., 114 (2004), 605610. 

19 
O. Schwartz, Immunological and virological aspects of HIV celltocell transfer, Retrovirology, 6 (2009), I16. 

20 
H. L. Smith and P. Waltman, Perturbation of a globally stable steady state, Proc. Am. Math. Soc., 127 (1999), 447453. 

21 
M. Sourisseau, N. SolFoulon, F. Porrot, F. Blanchet and O. Schwartz, Inefficient human immunodeficiency virus replication in mobile lymphocytes, J. Virol., 81 (2007), 10001012. 

22 
P. van den Driessche and J. Watmough, Reproduction numbers and subthreshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 2948. 

23 
L. Wang and S. Ellermeyer, HIV infection and $CD4^+$ T cell dynamics, Discrete Contin. Dyn. Syst. Ser. B, 6 (2006), 14171430. 

24 
L. Wang and M. Y. Li, Mathematical analysis of the global dynamics of a model for HIV infection of $CD4^{+}$ T cells, Math. Biosci., 200 (2006), 4457. 

Go to top
