Discrete and Continuous Dynamical Systems - Series B (DCDS-B)

Evolutionarily stable diffusive dispersal
Pages: 3319 - 3340, Issue 10, December 2014

doi:10.3934/dcdsb.2014.19.3319      Abstract        References        Full text (752.4K)           Related Articles

Alex Potapov - Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton AB T6G 2G1, Canada (email)
Ulrike E. Schlägel - Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton AB T6G 2G1, Canada (email)
Mark A. Lewis - Department of Mathematical and Statistical Sciences, Department of Biological Sciences, University of Alberta, Edmonton AB T6G 2G1, Canada (email)

1 P. A. Abrams and L. Ruokolainen, How does adaptive consumer movement affect population dynamics in consumer-resource metacommunities with homogeneous patches?, J. Theor. Biol., 277 (2011), 99-110.       
2 D. G. Aronson, The role of diffusion in mathematical biology: Skellam revisited, in Mathematics in Biology and Medicine (eds. V. Capasso, E. Grosso, S.L. Paaveri-Fontana) Springer, Berlin, (1985), 2-6.       
3 J. E. Brittain and T. J. Eikeland, Invertebrate drift - a review, Hydrobiologia, 166 (1988), 77-93.
4 R. S. Cantrell and C. Cosner, Spatial Ecology Via Reaction-Diffusion Equations, Wiley, The Atrium, Southern Gate, 2003.       
5 R. S. Cantrell, C. Cosner and Y. Lou, Approximating the ideal free distribution via reaction-diffusion-advection equations, J. Differential Equations, 245 (2008), 3687-3703.       
6 J. Dockery, V. Hutson, K. Mischaikow and M. Pernarowski, The evolution of slow dispersal rates: A reaction diffusion model, J. Math. Biol., 37 (1998), 61-83.       
7 S. D. Fretwell and H. L. Lucas, On territorial behavior and other factors influencing habitat distribution in birds I. Theoretical development, Acta Biotheoretica, 19 (1969), 16-36.
8 J. Hofbauer and K. Sigmund, Evolutionary Games and Population Dynamics, Cambridge Univ. Press, Cambridge, 1998.       
9 V. Křivan, R. Cressman and C. Schneider, The ideal free distribution: A review and synthesis of the game-theoretic perspective, Theor. Population Biol., 73 (2008), 403-425.
10 Y. Lou, Some Challenging Mathematical Problems in Evolution of Dispersal and Population Dynamics, in Tutorials in Mathematical Biosciences IV Lecture Notes in Mathematics Vol. 1922, Springer, Berlin Heidelberg (2008), 171-205.       
11 D. W. Morris, Adaptation and habitat selection in the eco-evolutionary process, Proc. Roy. Soc. B, 278 (2011), 2401-2411.
12 D. W. Morris and P. Lundberg, Pillars of Evolution, Oxford Univ. Press, Oxford, 2011.
13 L. Ni, A Perron type theorem on the principal eigenvalue of nonsymmetric elliptic operators, to appear in American Mathematical Monthly. Avalable online at URL: http://math.ucsd.edu/~lni/academic/perron-1210-2.pdf
14 A. Okubo and S. Levin, Diffusion and Ecological Problems, Springer, NY, 2001.       
15 O. Ovaskainen and S. J. Cornell, Biased Movement at a Boundary and Conditional Occupancy Times for Diffusion Processes, J. Appl. Prob., 40 (2003), 557-580.       
16 A. Potapov, Stochastic model of lake system invasion and its optimal control: neurodynamic programming as a solution method, Nat. Res. Mod., 22 (2009), 257-288.       
17 R. Development Core Team, R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria, 2007. ISBN 3-900051-07-0, http://www.R-project.org.
18 H. E. Romeijn and R. L. Smith, Simulated annealing for constrained global optimization, J. Global Optimization, 5 (1994), 101-126.       
19 P. Turchin, Quantitative Analysis of Movement, Sinauer Assoc., Sunderland, MA., 1998.

Go to top