Spreading speeds and traveling wave solutions in a competitive reactiondiffusion model for species persistence
in a stream
Pages: 3267  3281,
Issue 10,
December
2014
doi:10.3934/dcdsb.2014.19.3267 Abstract
References
Full text (537.2K)
Related Articles
Bingtuan Li  Department of Mathematics, University of Louisville, Louisville, KY 40292, United States (email)
William F. Fagan  Department of Biology, The University of Maryland, College Park, MD 20742, United States (email)
Garrett Otto  Department of Mathematics, University of Louisville, Louisville, KY 40292, United States (email)
Chunwei Wang  Department of Mathematics, University of Louisville, Louisville, KY 40292, United States (email)
1 
B. R. Anholt, Density dependence resolves the stream drift paradox, Ecology, 76 (1995), 22352239. 

2 
S. Flöder and C. Kilroy, Didymosphenia geminata (Protista, Bacillariophyceae) invasion, resistance of native periphyton communities, and implications for dispersal and management, Biodiversity and Conservation, 18 (2009), 38093824. 

3 
A. E. Hershey, J. Pastor, B. J. Peterson and G. W. Kling, Stable isotopes resolve the drift paradox for Baetis mayflies in an arctic river, Ecology, 74 (1993), 23152325. 

4 
S. Humphries and G. D. Ruxton, Is there really a drift paradox?, J. Anim. Ecol., 71 (2002), 151154. 

5 
A. C. Krist and C. C. Charles, The invasive New Zealand mudsnail, Potamopyrgus antipodarum, is an effective grazer of algae and altered the assemblage of diatoms more than native grazers, Hydrobiologia, 694 (2012), 143151. 

6 
B. Li, H. F. Weinberger and M. A. Lewis, Spreading speeds as slowest wave speeds for cooperative systems, Mathematical biosciences, 196 (2005), 8298. 

7 
B. Li, M. A. Lewis and H. F. Weinberger, Existence of traveling waves for integral recursions with nonmonotone growth functions, J. Math. Biol., 58 (2009), 323338. 

8 
B. Li, Traveling wave solutions in partially degenerate cooperative reactiondiffusion systems, Journal of Differential Equations, 252 (2012), 48424861. 

9 
X. Liang and X.Q. Zhao, Asymptotic speeds of spread and traveling waves for monotone semiflows with applications, Comm. Pure Appl. Math., 60 (2007), 140. Comm. Pure Appl. Math., 61 (2008), 137138. 

10 
R. Lui, Biological growth and spread modeled by systems of recursions, I Mathematical theory. Math. Biosci., 93 (1989), 269295. 

11 
F. Lutscher, E. McCauley and M. A. Lewis, Spatial patterns and coexistence mechanisms in systems with unidirectional flow, Theoretical Population Biology, 71 (2007), 267277. 

12 
F. Lutscher, E. Pachepsky and M. A. Lewis, The effect of dispersal patterns on stream populations, SIAM Appl. Math., 65 (2005), 13051327. 

13 
K. Müller, Investigations on the organic drift in North Swedish streams, Report of the Institute of Freshwater Research, Drottningholm., 34 (1954), 133148. 

14 
K. Müller, The colonization cycle of freshwater insects, Oecologia, 53 (1982), 202207. 

15 
A. Okubo, P. K. Maini, M. H. Williamson and J. D. Murray, The spatial spread of the grey squirrel in Britain, Proceedings of the Royal Society of London Series B, 238 (1989), 113125. 

16 
E. Pachepsky, F. Lutscher, R. M. Nisbet and M. A. Lewis, Persistence, spread and the drift paradox, Theoretical Population Biology, 67 (2005), 6173. 

17 
D. C. Speirs and W. S. C. Gurney, Population persistence in rivers and estuaries, Ecology, 82 (2001), 12191237. 

18 
O. Vasilyeva and F. Lutscher, How flow speed alters competitive outcome in advective environments, Bull. Math. Biol., 74 (2012), 29352958. 

19 
O. Vasilyeva and F. Lutscher, Competition of three species in an advective environment, Nonlinear Anal. Real World Appl., 13 (2012), 17301748. 

20 
C. Wang, A StageStructured Delayed ReactionDiffusion Model for Competition Between Two Species, Ph.D Thesis. University of Louisville, 2013. 

21 
Q. Wang and X. Q. Zhao, Spreading speed and traveling waves for the diffusive logistic equation with a sedentary compartment, Dyn. Cont. Discrete Impulsive Syst. (Ser. A), 13 (2006), 231246. 

22 
R. F. Waters, The drift of stream insects, Annu. Rev. Entomol., 17 (1972), 253272. 

23 
H. F. Weinberger, M. A. Lewis and B. Li, Analysis of linear determinacy for spread in cooperative models, J. Math. Biol., 45 (2002), 183218. 

Go to top
