A boundary value problem for integrodifference population models with cyclic kernels
Pages: 3191  3207,
Issue 10,
December
2014
doi:10.3934/dcdsb.2014.19.3191 Abstract
References
Full text (566.7K)
Related Articles
Jon Jacobsen  Department of Mathematics, Harvey Mudd College, Claremont, CA 91711, United States (email)
Taylor McAdam  Department of Mathematics, University of Texas, Austin, TX 78712, United States (email)
1 
C. J. Collins, C. I. Fraser, A. Ashcroft and J. M. Waters, Asymmetric dispersal of southern bullkelp (Durvillaea antarctica) adults in coastal New Zealand: Testing and oceanographic hypothesis, Molecular Ecology, 19 (2010), 45724580. 

2 
R. Dirzo and P. H. Raven, Global state of biodiversity and loss, Annual Review of Environment and Resources, 28 (2003), 137167. 

3 
N.E. Fahssi, Polynomial triangles revisited. arXiv:1202.0228v7 [math.CO], (2012). 

4 
D. P. Hardin, P. Takáč and G. F. Webb, Asymptotic properties of a continuousspace discretetime population model in a random environment, Journal of Mathematical Biology, 26 (1988), 361374. 

5 
M. P. Hassel, The Dynamics of Arthropod PredatorPrey Systems, no. 13 in Monographs in Population Biology, Princeton University Press, 1978. 

6 
C. M. Herrera, P. Jordano, J. Guitian and A. Traveset, Annual variability in seed production by woody plants and the masting concept: Reassessment of principles and relationship to pollination and seed dispersal, The American Naturalist, 152 (1998), 576594. 

7 
H. F. Howe and J. Smallwood, Ecology of seed dispersal, Annual Review of Ecology and Systematics, 13 (1982), 201228. 

8 
J. Jacobsen, Y. Jin, and M. A. Lewis, Integrodifference models for persistence in temporally varying river environments, preprint. 

9 
M. Kot and W. M. Schaffer, Discretetime growthdispersal models, Mathematical Biosciences, 80 (1986), 109136. 

10 
M. A. Krasnosel'skii, Positive Solutions of Operator Equations, P. Noordhoff Ltd., Groningen, The Netherlands, 1964. 

11 
F. Lutscher, E. Pachepsky and M. A. Lewis, The effect of dispersal patterns on stream populations, SIAM Review, 47 (2005), 749772. 

12 
M. G. Neubert, M. Kot and M. A. Lewis, Dispersal and patternformation in a discretetime predatorprey model, Theoretical Population Biology, 48 (1995), 743. 

13 
D. Pearce, An economic approach to saving the tropical forests, in Economic Policy Towards the Environment, (ed. D. Helm), Blackwell Publishers, 1991, 239262. 

14 
N. J. A. Sloane, Online Encyclopedia of Integer Sequences, 2013. 

15 
C. Tudge, Last Animals at the Zoo: How Mass Extinction Can Be Stopped, Island Press, Washington, D.C., 1992. 

16 
R. W. Van Kirk and M. A. Lewis, Integrodifference models for persistence in fragmented habitats, Bulletin of Mathematical Biology, 59 (1997), 107137. 

Go to top
