The diffusive competition model with
a free boundary: Invasion of a superior or inferior competitor
Pages: 3105  3132,
Issue 10,
December
2014
doi:10.3934/dcdsb.2014.19.3105 Abstract
References
Full text (506.3K)
Related Articles
Yihong Du  School of Science and Technology, University of New England, Armidale, NSW 2351, Australia (email)
Zhigui Lin  School of Mathematical Science, Yangzhou University, Yangzhou 225002, China (email)
1 
G. Bunting, Y. Du and K. Krakowski, Spreading speed revisited: Analysis of a free boundary model, Netw. Heterog. Media, 7 (2012), 583603. 

2 
X. F. Chen and A. Friedman, A free boundary problem arising in a model of wound healing, SIAM J. Math. Anal., 32 (2000), 778800. 

3 
R. S. Cantrell and C. Cosner, Spatial Ecology via ReactionDiffusion Equations, John Wiley& Sons Ltd, 2003. 

4 
Y. Du and Z. M. Guo, Spreadingvanishing dichotomy in the diffusive logistic model with a free boundary II, J. Diff. Eqns., 250 (2011), 43364366. 

5 
Y. Du and Z. G. Lin, Spreadingvanishing dichotomy in the diffusive logistic model with a free boundary, SIAM J. Math. Anal., 42 (2010), 377405. 

6 
Y. Du and L. Ma, Logistic type equations on $\mathbbR^N$ by a squeezing method involving boundary blowup solutions, J. London Math. Soc., 64 (2001), 107124. 

7 
J.S. Guo and C.H. Wu, On a free boundary problem for a twospecies weak competition system, J. Dyn. Diff. Equat., 24 (2012), 873895. 

8 
Y. KanOn, Fisher wave fronts for the LotkaVolterra competition model with diffusion, Nonl. Anal. TMA, 28 (1997), 145164. 

9 
K. Kishimoto and H. F. Weinberger, The spatial homogeneity of stable equilibria of some reactiondiffusion systems on convex domains, J. Diff. Eqns., 58 (1985), 1521. 

10 
O. A. Ladyzenskaja, V. A. Solonnikov and N. N. Ural'ceva, Linear and Quasilinear Equations of Parabolic Type, Amer. Math. Soc., Providence, RI, 1968. 

11 
G. M. Lieberman, Second Order Parabolic Differential Equations, World Scientific, Singapore, 1996. 

12 
Z. G. Lin, A free boundary problem for a predatorprey model, Nonlinearity, 20 (2007), 18831892. 

13 
Y. Morita and K. Tachibana, An entire solution to the LotkaVolterra competitiondiffusion equations, SIAM J. Math. Anal., 40 (2009), 22172240. 

14 
C. V. Pao, Nonliear Parabolic and Elliptic Equations, Plenum Press, New York, 1992. 

15 
H. L. Smith, Monotone Dynamical Systems, American Math. Soc., Providence, 1995. 

16 
M. X. Wang, On some free boundary problems of the preypredator model, J. Diff. Eqns., 256 (2014), 33653394. 

17 
J. F. Zhao and M. X. Wang, A free boundary problem for a predatorprey model with double free boundaries, preprint. 

Go to top
