Discrete and Continuous Dynamical Systems - Series B (DCDS-B)

Inside dynamics of solutions of integro-differential equations
Pages: 3057 - 3085, Issue 10, December 2014

doi:10.3934/dcdsb.2014.19.3057      Abstract        References        Full text (1293.3K)           Related Articles

Olivier Bonnefon - INRA, UR 546 Biostatistique et Processus Spatiaux (BioSP), F-84914 Avignon, France (email)
Jérôme Coville - INRA, UR 546 Biostatistique et Processus Spatiaux (BioSP), F-84914 Avignon, France (email)
Jimmy Garnier - INRA, UR 546 Biostatistique et Processus Spatiaux (BioSP), F-84914 Avignon, France (email)
Lionel Roques - INRA, UR 546 Biostatistique et Processus Spatiaux (BioSP), F-84914 Avignon, France (email)

1 H. G. Aronson, The asymptotic speed of propagation of a simple epidemic, in Nonlinear Diffusion, (1977).       
2 H. G. Aronson and D. G. Weinberger, Nonlinear diffusion in population genetics, combustion and nerve propagation, in Partial Differential Equations and Related Topics, 446 (1975), 5-49.
3 D. G Aronson and H. F Weinberger, Multidimensional non-linear diffusion arising in population-genetics, Adv. Math., 30 (1978), 33-76.       
4 F. Austerlitz and P. H. Garnier-Géré, Modelling the impact of colonisation on genetic diversity and differentiation of forest trees: Interaction of life cycle, pollen flow and seed long-distance dispersal, Heredity, 90 (2003), 282-290.
5 H. Berestycki and F. Hamel, Generalized transition waves and their properties, Comm. Pure Appl. Math., 65 (2012), 592-648.       
6 G. Bohrer, R. Nathan and S. Volis, Effects of long-distance dispersal for metapopulation survival and genetic structure at ecological time and spatial scales, J. Ecol., 93 (2005), 1029-1040.
7 O. Bonnefon, J. Garnier, F. Hamel and L. Roques, Inside dynamics of delayed traveling waves, Math. Model. Nat. Phenom., 8 (2013), 42-59.       
8 O. Bonnefon, J. Coville, J. Garnier, F. Hamel and L. Roques, The spatio-temporal dynamics of neutral genetic diversity, Preprint.
9 M. Bramson, Convergence of solutions of the Kolmogorov equation to travelling waves, Mem. Amer. Math. Soc., 44 (1983), iv+190.       
10 M. Cain, B. Milligan and A. Strand, Long distance seed dispersal in plant populations, Am. J. Bot., 87 (2000), 1217-1227.
11 A. Carr and J. Chmaj, Uniqueness of travelling waves for nonlocal monostable equations, Proc. Amer. Math. Soc., 132, (2004), 2433-2439.       
12 J. S. Clark, Why trees migrate so fast: Confronting theory with dispersal biology and the paleorecord, Am. Nat., 152 (1998), 204-224.
13 J. S. Clark, C. Fastie, G. Hurtt, S. T. Jackson, C. Johnson, G. A. King, M. Lewis, J. Lynch, S. Pacala, C. Prentice, E. W. Schupp, T. Webb III and P. Wyckoff, Reid's paradox of rapid plant migration, BioScience, 48 (1998), 13-24.
14 J. Coville and L. Dupaigne, On a nonlocal reaction diffusion equation arising in population dynamics, Proc. Roy. Soc. Edinburgh Sect. A, 137 (2007), 1-29.       
15 J. Coville, J. Dávila and S. Martínez, Nonlocal anisotropic dispersal with monostable nonlinearity, J. Diff. Equations, 244 (2008), 3080-3118.       
16 E. C. M. Crooks, Travelling fronts for monostable reaction-diffusion systems with gradient-dependence, Adv. Diff. Equations, 8 (2003), 279-314.       
17 O. Diekmann, Run for your life. A note on the asymptotic speed of propagation of an epidemic, J. Diff. Equations, 33 (1979), 58-73.       
18 J. P. Eckmann and C. E. Wayne, The nonlinear stability of front solutions for parabolic differential equations, Comm. Math. Phys., 161 (1994), 323-334.       
19 J. Fayard, E. K. Klein and F. Lefèvre, Long distance dispersal and the fate of a gene from the colonization front, J. Evol. Biol., 22 (2009), 2171-2182.
20 P. C. Fife, Mathematical Aspects of Reacting and Diffusing Systems, Springer-Verlag, 1979.       
21 P. C. Fife and J. McLeod, The approach of solutions of nonlinear diffusion equations to traveling front solutions, Arch. Ration. Mech. Anal., 65 (1977), 335-361.       
22 J. Garnier, Accelerating solutions in integro-differential equations, SIAM J. Math. Anal., 43 (2011), 1955-1974.       
23 J. Garnier, T. Giletti, F. Hamel and L. Roques, Inside dynamics of pulled and pushed fronts, J. Math. Pures Appl., 11 (2012), 173-188.       
24 O. Hallatschek and D. R. Nelson, Gene surfing in expanding populations, Theor. Popul. Biol., 73 (2008), 158-170.
25 Ja. I. Kanel, Certain problem of burning-theory equations, Dokl. Akad. Nauk SSSR, 136 (1961), 277-280.       
26 E. K. Klein, C. Lavigne and P. H. Gouyon, Mixing of propagules from discrete sources at long distance : Comparing a dispersal tail to an exponential, BMC Ecology, 6 (2006).
27 N. S. Kolmogorov, N. Petrovsky and I. G. Piskunov, Étude de l'équation de la diffusion avec croissance de la quantité de matière et son application a un problème biologique, Bull. Univ. Moscou, Sér A, 1 (1937) 1-26.
28 M. Kot, M. Lewis and P. Van den Driessche, Dispersal data and the spread of invading organisms, Ecology, 77 (1996), 2027-2042.
29 J. G. Lambrinos, How interactions between ecology and evolution influence contemporary invasion dynamics, Ecol., 85 (2004), 2061-2070.
30 K. S. Lau, On the nonlinear diffusion equation of Kolmogorov, Petrovsky and Piscounov, J. Diff. Equations, 59 (1985), 44-70.       
31 J. Medlock and M. Kot, Spreading disease: Integro-differential equations old and new, Math. Biosci., 184 (2003), 201-222.       
32 D. Mollison, Spatial contact models for ecological and epidemic spread, J. R. Stat. Ser. B Stat. Methodol., 39 (1977),283-326.       
33 R. Nathan and H. Muller-Landau, Spatial patterns of seed dispersal, their determinants and consequences for recruitment, Trends Ecol. Evol., 15 (2000), 278-285.
34 J. M. Pringle, F. Lutscher and E. Glick, Going against the flow: effects of non-Gaussian dispersal kernels and reproduction over multiple generations, Mar. Ecol. Prog. Ser., 377 (2009), 13-17.
35 C. Reid, The Origin of the British Flora, Dulau & Co, 1899.
36 L. Roques, F. Hamel, J. Fayard, B. Fady and E. K. Klein, Recolonisation by diffusion can generate increasing rates of spread, Theor. Popul. Biol., 77 (2010), 205-212.
37 L. Roques, J. Garnier, F. Hamel and E. Klein, Allee effect promotes diversity in traveling waves of colonization, Proc. Natl. Acad. Sci. USA, 109 (2012), 8828-8833.       
38 F. Rothe, Convergence to travelling fronts in semilinear parabolic equations, Proc. Roy. Soc. Edinburgh Sect. A, 80 (1978), 213-234.       
39 F. Rothe, Convergence to pushed fronts, Rocky Mountain J. Math., 11 (1981), 617-634.       
40 D. H. Sattinger, On the stability of waves of nonlinear parabolic systems, Adv. Math., 22 (1976), 312-355.       
41 D. H. Sattinger, Weighted norms for the stability of traveling waves, J. Diff. Equations, 25 (1977), 130-144.       
42 K. Schumacher, Travelling-front solutions for integro-differential equations. I, J. Reine Angew. Math., 316 (1980), 54-70.       
43 J. G. Skellam, Random dispersal in theoretical populations, Biometrika, 38 (1951), 196-218.       
44 A. N. Stokes, On two types of moving front in quasilinear diffusion, Math. Biosci., 31 (1976), 307-315.       
45 H. R. Thieme, Density-dependent regulation of spatially distributed populations and their asymptotic speed of spread, J. Math. Biol., 8 (1979), 173-187.       
46 P. Turchin, Quantitative Analysis of Movement: Measuring and Modeling Population Redistribution in Animals and Plants, Sinauer Associates, 1998.
47 K. Uchiyama, The behaviour of solutions of some non-linear diffusion equations for large time, J. Math. Kyoto Univ., 18 (1978), 453-508.       
48 M. O. Vlad, L. L. Cavalli-Sforza and J. Ross, Enhanced (hydrodynamic) transport induced by population growth in reaction-diffusion systems with application to population genetics, Proc. Natl. Acad. Sci. USA, 101 (2004), 10249-10253.
49 H. F. Weinberger, Long-time behavior of a class of biological models, SIAM J. Math. Anal., 13 (1982), 353-396.       
50 H. F. Weinberger, On spreading speeds and traveling waves for growth and migration in periodic habitat, J. Math. Biol., 45 (2002), 511-548.       

Go to top