Mathematical Biosciences and Engineering (MBE)

A model for the nonlinear mechanism responsible for cochlear amplification
Pages: 1357 - 1373, Issue 6, December 2014

doi:10.3934/mbe.2014.11.1357      Abstract        References        Full text (2206.2K)           Related Articles

Kimberly Fessel - Department of Mathematical Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180-3590, United States (email)
Mark H. Holmes - Department of Mathematical Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180-3590, United States (email)

1 J. Ashmore, Cochlear outer hair cell motility, Physiol. Rev., 88 (2008), 173-210.
2 J. Ashmore, P. Avan, W. E. Brownell, P. Dallos, K. Dierkes, R. Fettiplace, K. Grosh, C. M. Hackney, A. J. Hudspeth, F. J├╝licher, B. Lindner, P. Martin, J. Meaud, C. Petit, J. R. Santos Sacchi and B. Canlon, The remarkable cochlear amplifier, Hearing Res., 266 (2010), 1-17.
3 J. F. Ashmore, A fast motile response in guinea-pig outer hair cells: The cellular basis of the cochlear amplifier, J. Physiol., 388 (1987), 323-347.
4 I. A. Belyantseva, H. J. Adler, R. Curi, G. I. Frolenkov and B. Kachar, Expression and localization of prestin and the sugar transporter glut-5 during development of electromotility in cochlear outer hair cells, J. Neurosci., 20 (2000), RC116.
5 R. S. Chadwick, Studies in cochlear mechanics, in Mathematical Modeling of the Hearing Process (eds. M. H. Holmes and L. A. Rubenfeld), Lecture Notes in Biomathematics, Springer-Verlag, New York, 1981, 369-386.
6 R. S. Chadwick, Compression, gain, and nonlinear distortion in an active cochlear model with subpartitions, Proc. Nat. Acad. Sci., 95 (1998), 14594-14599.
7 P. Dallos and B. Fakler, Prestin, a new type of motor protein, Nature Reviews Molecular Cell Biology, 3 (2002), 104-111.
8 D. Y. Gao, Nonlinear elastic beam theory with application in contact problems and variational approaches, Mech. Res. Commun., 23 (1996), 11-17.       
9 R. Glueckert, K. Pfaller, A. Kinnefors, A. Schrott-Fischer and H. Rask-Andersen, High resolution scanning electron microscopy of the human organ of Corti: A study using freshly fixed surgical specimens, Hearing Res., 199 (2005), 40-56.
10 M. H. Holmes, Frequency discrimination in the mammalian cochlea: Theory vs. experiment, J. Acoust. Soc. Amer., 81 (1987), 103-114.
11 M. H. Holmes and J. D. Cole, Cochlear mechanics: Analysis for a pure tone, J. Acoust. Soc. Amer., 76 (1984), 767-778.       
12 A. J. Hudspeth and D. P. Corey, Sensitivity, polarity, and conductance change in the response of vertebrate hair cells to controlled mechanical stimuli, Proc. Nat. Acad. Sci., 74 (1977), 2407-2411.
13 Z. Liao, S. Feng, A. S. Popel, W. E. Brownell and A. A. Spector, Outer hair cell active force generation in the cochlear environment, J. Acoust. Soc. Amer., 122 (2007), 2215-2225.
14 M. C. Liberman, J. Gao, D. Z. He, X. Wu, S. Jia and J. Zuo, Prestin is required for electromotility of the outer hair cell and for the cochlear amplifier, Nature, 419 (2002), 300-304.
15 J. Lighthill, Energy flow in the cochlea, J. Fluid Mechanics, 106 (1981), 149-213.       
16 K. M. Lim and C. R. Steele, A three-dimensional nonlinear active cochlear model analyzed by the WKB-numeric method, Hearing Res., 170 (2002), 190-205.
17 J. Meaud and K. Grosh, Response to a pure tone in a nonlinear mechanical-electrical-acoustical model of the cochlea, Biophysical Journal, 102 (1996), 1237-1246.
18 K. E. Nilsen and I. J. Russell, The spatial and temporal representation of a tone on the guinea pig basilar membrane, Proc. Natl. Acad. Sci., 97 (2006), 11751-11758.
19 J. O. Pickles, An Introduction to the Physiology of Hearing, Emerald Group, Bingley, UK, 2008.
20 S. Ramamoorthy, N. V. Deo and K. Grosh, A mechano-electro-acoustical model for the cochlea: Response to acoustic stimuli, JASA, 121 (2007), 2758-2773.
21 I. J. Russell, A. R. Cody and G. P. Richarson, The responses of inner and outer hair cells in the basal turn of the guinea-pig cochlea and in the mouse cochlea grown in vitro, Hearing Res., 22 (1986), 199-216.
22 I. J. Russell and K. E. Nilsen, The location of the cochlear amplifier: Spatial representation of a single tone on the guinea pig basilar membrane, Proc. Nat. Acad. Sci., 94 (1997), 2660-2664.
23 C. R. Steele and L. A. Taber, Comparison of WKB calculations and experimental results for three-dimensional cochlear models, J. Acoust. Soc. Amer., 65 (1979), 1007-1018.
24 I. U. Teudt and C.-P. Richter, The hemicochlea preparation of the guinea pig and other mammalian cochleae, J. Neurosci. Methods, 162 (2007), 187-197.
25 J. A. Tolomeo and M. C. Holley, Mechanics of microtubule bundles in pillar cells from the inner ear, Biophys. J., 73 (1997), 2241-2247.
26 Y. Yoon, S. Puria and C. R. Steele, Frequency and spatial response of basilar membrane vibration in a three-dimensional gerbil cochlear model, J. Mech. Mater. Struct., 2 (2007), 1449-1458.

Go to top