`a`
Discrete and Continuous Dynamical Systems - Series A (DCDS-A)
 

Global well-posedness for the dissipative system modeling electro-hydrodynamics with large vertical velocity component in critical Besov space
Pages: 555 - 582, Issue 1, January 2015

doi:10.3934/dcds.2015.35.555      Abstract        References        Full text (655.6K)           Related Articles

Jihong Zhao - College of Science, Northwest A&F University, Yangling, Shaanxi 712100, China (email)
Ting Zhang - Department of Mathematics, Zhejiang University, Hangzhou 310027, China (email)
Qiao Liu - Department of Mathematics, Hunan Normal University, Changsha, Hunan 410081, China (email)

1 H. Bahouri, J.-Y. Chemin and R. Danchin, Fourier Analysis and Nonlinear Partial Differential Equations, Grundlehren der mathematischen Wissenschaften, Vol. 343, Springer, Berlin, 2011.       
2 P. B. Balbuena and Y. Wang, Lithium-ion Batteries, Solid-electrolyte Interphase, Imperial College Press, 2004.
3 J. M. Bony, Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires, Ann. Sci. école Norm. Sup., 14 (1981), 209-246.       
4 M. Cannone, A generalization of a theorem by Kato on Navier-Stokes equations, Rev. Mat. Iberoam., 13 (1997), 515-541.       
5 M. Cannone, Y. Meyer and F. Planchon, Solutions Auto-similaires des ÉQuations de Navier-Stokes in $\mathbbR^3$, Exposé n. VIII, Séminaire X-EDP, Ecole Polytechnique, 1994.       
6 J.-Y. Chemin, Théorèmes d'unicité pour le système de Navier-Stokes tridimensionnel, J. Anal. Math., 77 (1999), 27-50.       
7 J.-Y. Chemin and N. Lerner, Flot de champs de vecteurs non lipschitziens et équations de Navier-Stokes, J. Differential Equations, 121 (1995), 314-328.       
8 J.-Y. Chemin and P. Zhang, On the global wellposedness to the 3-D incompressible anisotropic Navier-Stokes equations, Commun. Math. Phys., 272 (2007), 529-566.       
9 R. Danchin, Local theory in critical spaces for compressible viscous and heat-conducting gases, Comm. Partial Differential Equations, 26 (2001), 1183-1233.       
10 R. Danchin, Fourier Analysis Methods for PDE's, http://perso-math.univ-mlv.fr/users/danchin.raphael/courschine.pdf, 2005.
11 C. Deng, J. Zhao and S. Cui, Well-posedness for the Navier-Stokes-Nernst-Planck-Poisson system in Triebel-Lizorkin space and Besov space with negative indices, J. Math. Anal. Appl., 377 (2011), 392-405.       
12 E. T. Enikov and B. J. Nelson, Electrotransport and deformation model of ion exchange membrane based actuators, Smart Structures and Materials, 3978 (2000), 129-139.
13 E. T. Enikov and G. S. Seo, Analysis of water and proton fluxes in ion-exchange polymer-metal composite (IPMC) actuators subjected to large external potentials, Sensors and Actuators, 122 (2005), 264-272.
14 H. Fujita and T. Kato, On the Navier-Stokes initial value problem. I, Arch. Rational Mech. Anal., 16 (1964), 269-315.       
15 Y. Giga, Solutions for semilinear parabolic equations in $L^p$ and regularity of weak solutions of the Navier-Stokes system, J. Differential Equations, 62 (1986), 186-212.       
16 J. Huang, M. Paicu and P. Zhang, Global solutions to the 3-D incompressible inhomogeneous Navier-Stokes system with rough density, Progress in Nonlinear Differential Equations and Their Applications, 84 (2013), 159-180.       
17 J. W. Jerome, Analytical approaches to charge transport in a moving medium, Tran. Theo. Stat. Phys., 31 (2002), 333-366.       
18 J. W. Jerome, The steady boundary value problem for charged incompressible fluids: PNP/Navier-Stokes systems, Nonlinear Anal., 74 (2011), 7486-7498.       
19 J. W. Jerome and R. Sacco, Global weak solutions for an incompressible charged fluid with multi-scale couplings: Initial-boundary-value problem, Nonlinear Anal., 71 (2009), e2487-e2497.       
20 T. Kato, Strong $L^p$ solutions of the Navier-Stokes equations in $\mathbbR^m$ with applications to weak solutions, Math. Z., 187 (1984), 471-480.       
21 T. Kato and G. Ponce, Well-posedness of the Euler and Navier-Stokes equations in the Lebesgue spaces $L_p^s(\mathbbR^2)$, Rev. Mat. Iberoam., 2 (1986), 73-88.       
22 H. Koch and D. Tataru, Well-posedness for the Navier-Stokes equations, Adv. Math., 157 (2001), 22-35.       
23 P.-G. Lemarié-Rieusset, Recent Developments in the Navier-Stokes Problem, Research Notes in Mathematics, Chapman & Hall/CRC, 2002.       
24 J. Leray, Sur le mouvement d'un liquide visqueux emplissant l'espace, Acta Math., 63 (1934), 193-248.       
25 M. Longaretti, B. Chini, J. W. Jerome and R. Sacco, Electrochemical modeling and characterization of voltage operated channels in nano-bio-electronics, Sensor Letters, 6 (2008), 49-56.
26 M. Longaretti, B. Chini, J. W. Jerome and R. Sacco, Computational modeling and simulation of complex systems in bio-electronics, J. Computational Electronics, 7 (2008), 10-13.
27 M. Longaretti, G. Marino, B. Chini, J. W. Jerome and R. Sacco, Computational models in nano-bio-electronics: Simulation of ionic transport in voltage operated channels, J. Nanoscience and Nanotechnology, 8 (2008), 3686-3694.
28 M. Paicu and P. Zhang, Global solutions to the 3-D incompressible anisotropic Navier-Stokes system in the critical spaces, Commun. Math. Phys., 307 (2011), 713-759.       
29 M. Paicu and P. Zhang, Global solutions to the 3-D incompressible inhomogeneous Navier-Stokes system, J. Funct. Anal., 262 (2012), 3556-3584.       
30 F. Planchon, Sur un inégalité de type Poincaré, C. R. Acad. Sci. Paris Sér. I Math., 330 (2000), 21-23.       
31 I. Rubinstein, Electro-Diffusion of Ions, SIAM Studies in Applied Mathematics, SIAM, Philadelphia, 1990.       
32 R. J. Ryham, Existence, uniqueness, regularity and long-term behavior for dissipative systems modeling electrohydrodynamics, arXiv:0910.4973v1.
33 R. J. Ryham, C. Liu and L. Zikatanov, Mathematical models for the deformation of electrolyte droplets, Discrete Contin. Dyn. Syst. Ser. B, 8 (2007), 649-661.       
34 M. Schmuck, Analysis of the Navier-Stokes-Nernst-Planck-Poisson system, Math. Models Methods Appl. Sci., 19 (2009), 993-1015.       
35 M. Shahinpoor and K. J. Kim, Ionic polymer-metal composites: III. Modeling and simulation as biomimetic sensors, actuators, transducers, and artificial muscles, Smart Mater. Struct., 13 (2004), 1362-1388.
36 H. Triebel, Theory of Function Spaces, Monogr. Math., 78, Birkhäuser Verlag, Basel, 1983.       
37 T. Zhang, Global wellposedness problem for the 3-D incompressible anisotropic Navier-Stokes equations in an anisotropic space, Commun. Math. Phys., 287 (2009), 211-224.       
38 T. Zhang and D. Y. Fang, Global wellposed problem for the 3-D incompressible anisotropic Navier-Stokes equations, J. Math. Pures Appl., 90 (2008), 413-449.       
39 J. Zhao, C. Deng and S. Cui, Global well-posedness of a dissipative system arising in electrohydrodynamics in negative-order Besov spaces, J. Math. Physics, 51 (2010), 093101, 17 pp.       
40 J. Zhao, C. Deng and S. Cui, Well-posedness of a dissipative system modeling electrohydrodynamics in Lebesgue spaces, Differential Equations & Applications, 3 (2011), 427-448.       

Go to top