Spectrum and amplitude equations for scalar delaydifferential equations with large delay
Pages: 537  553,
Issue 1,
January
2015
doi:10.3934/dcds.2015.35.537 Abstract
References
Full text (479.4K)
Related Articles
Serhiy Yanchuk  HumboldtUniversity of Berlin, Institute of Mathematics, Unter den Linden 6, 10099, Berlin, Germany (email)
Leonhard Lücken  HumboldtUniversity of Berlin, Institute of Mathematics, Unter den Linden 6, 10099, Berlin, Germany (email)
Matthias Wolfrum  Weierstrass Institute for Applied Analysis and Stochastics, Mohrenstrasse 39, 10117 Berlin, Germany (email)
Alexander Mielke  Weierstrass Institute for Applied Analysis and Stochastics, Mohrenstrasse 39, 10117 Berlin, Germany (email)
1 
S.N. Chow, J. K. Hale and W. Huang, From sine waves to square waves in delay equations, Proc. Roy. Soc. Edinburgh Sect. A, 120 (1992), 223229. 

2 
S.N. Chow, X.B. Lin and J. MalletParet, Transition layers for singularly perturbed delay differential equations with monotone nonlinearities, J. Dynam. Diff. Equations, 1 (1989), 343. 

3 
P. Collet and J. Eckmann, The time dependent amplitude equation for the SwiftHohenberg problem, Comm. Math. Phys., 132 (1990), 139153. 

4 
B. Fiedler, C. Rocha and M. Wolfrum, Heteroclinic orbits between rotating waves of semilinear parabolic equations on the circle, J. Differential Equations, 201 (2004), 99138. 

5 
G. Friesecke and R. L. Pego, Solitary waves on FPU lattices. I. Qualitative properties, renormalization and continuum limit, Nonlinearity, 12 (1999), 16011627. 

6 
G. Giacomelli and A. Politi, Multiple scale analysis of delayed dynamical systems, Phys. D, 117 (1998), 2642. 

7 
G. Giacomelli and A. Politi, Relationship between delayed and spatially extended dynamical systems, Phys. Rev. Lett., 76 (1996), 26862689. 

8 
J. Giannoulis and A. Mielke, Dispersive evolution of pulses in oscillator chains with general interaction potentials, Discrete Contin. Dyn. Syst. Ser. B, 6 (2006), 493523. 

9 
J. Giannoulis and A. Mielke, The nonlinear Schrödinger equation as a macroscopic limit for an oscillator chain with cubic nonlinearities, Nonlinearity, 17 (2004), 551565. 

10 
J. Hale and W. Huang, Periodic solutions of singularly perturbed delay equations, Z. Angew. Math. Phys., 47 (1996), 5788. 

11 
S. Heiligenthal, Th. Dahms, S. Yanchuk, Th. Jüngling, V. Flunkert, I. Kanter, E. Schöll and W. Kinzel, Strong and weak chaos in nonlinear networks with timedelayed couplings, Phys. Rev. Lett., 107 (2011), 234102. 

12 
W. Huang, Stability of square wave periodic solution for singularly perturbed delay differential equations, J. Differential Equations, 168 (2000), 239269. 

13 
O. D'Huys, S. Zeeb, Th. Jüngling, S. Heiligenthal, S. Yanchuk and W. Kinzel, Synchronisation and scaling properties of chaotic networks with multiple delays, EPL (Europhysics Letters), 103 (2013), 10013. 

14 
A. F. Ivanov and A. N. Sharkovsky, Oscillations in singularly perturbed delay equations, in Dynamics Reported. Expositions in Dynamical Systems (eds. C. K. R. T. Jones, U. Kirchgraber and H. O. Walther), SpringerVerlag, 1992, 164224. 

15 
S. A. Kashchenko, The GinzburgLandau equation as a normal form for a secondorder differencedifferential equation with a large delay, Comput. Meth. Math. Phys., 38 (1998), 443451. 

16 
P. Kirrmann, G. Schneider and A. Mielke, The validity of mudulation equations for extended systems with cubic nonlinearities, Proc. Roy. Soc. Edinburgh Sect. A, 122 (1992), 8591. 

17 
B. Krauskopf and D. Lenstra, editors, Fundamental Issues of Nonlinear Laser Dynamics, AIP Conference Proceedings, 548, AIP, New York, 2000. 

18 
M. Lichtner, M. Wolfrum and S. Yanchuk, The spectrum of delay differential equations with large delay, SIAM J. Math. Anal., 43 (2011), 788802. 

19 
J. MalletParet and R. D. Nussbaum, Global continuation and asymptotic behaviour for periodic solutions of a differentialdelay equation, Ann. Mat. Pura Appl., 145 (1986), 33128. 

20 
J. MalletParet and R. D. Nussbaum, A differential delay equations arising in optics and physiology, SIAM J. Math. Anal., 20 (1989), 249292. 

21 
A. Mielke, editor, Analysis, Modeling and Simulation of Multiscale Problems, SpringerVerlag, Berlin, 2006. 

22 
A. Mielke, Deriving amplitude equations via evolutionary $\Gamma$convergence, WIASpreprint 1914 (2014), submitted to Discrete Contin. Dyn. Syst. Ser. B. 

23 
A. Mielke, The GinzburgLandau equation in its role as a modulation equation, in Handbook of Dynamical Systems, Vol. 2, NorthHolland, Amsterdam, 2002, 759834. 

24 
A. Mielke, G. Schneider and A. Ziegra, Comparison of inertial manifolds and application to modulated systems, Math. Nachr., 214 (2000), 5369. 

25 
A. C. Newell and J. A. Whitehead, Finite bandwidth, finite amplitude convection, J. Fluid Mech., 38 (1969), 279303. 

26 
G. Schneider, A new estimate for the GinzburgLandau approximation on the real axis, J. Nonlinear Sci., 4 (1994), 2334. 

27 
J. Sieber, M. Wolfrum, M. Lichtner and S. Yanchuk, On the stability of periodic orbits in delay equations with large delay, Discrete Contin. Dyn. Syst. A, 33 (2013), 31093134. 

28 
M. C. Soriano, J. GarcíaOjalvo, C. R. Mirasso and I. Fischer, Complex photonics: Dynamics and applications of delaycoupled semiconductors lasers, Rev. Mod. Phys., 85 (2013), 421470. 

29 
A. van Harten, On the validity of the GinzburgLandau equation, J. Nonlinear Sci., 1 (1991), 397422. 

30 
M. Wolfrum and S. Yanchuk, Eckhaus instability in systems with large delay, Phys. Rev. Lett, 96 (2006), 220201. 

31 
M. Wolfrum, S. Yanchuk, P. Hövel and E. Schöll, Complex dynamics in delaydifferential equations with large delay, Eur. Phys. J. Special Topics, 191 (2010), 91103. 

Go to top
