`a`
Discrete and Continuous Dynamical Systems - Series A (DCDS-A)
 

The singular limit problem in a phase separation model with different diffusion rates $^*$
Pages: 483 - 512, Issue 1, January 2015

doi:10.3934/dcds.2015.35.483      Abstract        References        Full text (355.6K)           Related Articles

Kelei Wang - Wuhan Institute of Physics and Mathematics, The Chinese Academy of Sciences, Wuhan 430071, China (email)

1 H. Brezis and A. Ponce, Kato's inequality when $\Delta u$ is a measure, C. R. Math. Acad. Sci. Paris, 338 (2004), 599-604.       
2 L. Caffarelli, A. Karakhanyan and F. Lin, The geometry of solutions to a segregation problem for non-divergence systems, J. Fixed Point Theory Appl., 5 (2009), 319-351.       
3 L. Caffarelli and F. Lin, Singularly perturbed elliptic systems and multi-valued harmonic functions with free boundaries, Journal of the American Mathematical Society, 21 (2008), 847-862.       
4 L. Caffarelli and F. Lin, Nonlocal heat flows preserving the $L^2$ energy, Discrete and Continuous Dynamical Systems (DCDS-A), 23 (2009), 49-64.       
5 L. Caffarelli and S. Salsa, A geometric Approach to Free Boundary Problems, Graduate Studies in Mathematics, 68, American Mathematical Society, Providence, RI, 2005.       
6 J. Cannon and C. Hill, On the movement of a chemical reaction interface, Indiana Univ. Math. J., 20 (1970), 429-454.       
7 M. Conti, S. Terracini and G. Verzini, A variational problem for the spatial segregation of reaction diffusion systems, Indiana Univ. Math. J., 54 (2005), 779-815.       
8 M. Conti, S. Terracini and G. Verzini, Asymptotic estimates for the spatial segregation of competitive systems, Adv. Math., 195 (2005), 524-560.       
9 E. N. Dancer, D. Hilhorst, M. Mimura and L. A. Peletier, Spatial segregation limit of a competition-diffusion system, European J. Appl. Math., 10 (1999), 97-115.       
10 E. N. Dancer, K. Wang and Z. Zhang, Dynamics of strongly competing systems with many species, Trans. Amer. Math. Soc., 364 (2012), 961-1005.       
11 E. N. Dancer, K. Wang and Z. Zhang, Uniform Hölder estimate for singularly perturbed parabolic systems of Bose-Einstein condensates and competing species, Journal of Differential Equations, 251 (2011), 2737-2769.       
12 E. N. Dancer, K. Wang and Z. Zhang, The limit equation for the Gross-Pitaevskii equations and S. Terracini's conjecture, Journal of Functional Analysis, 262 (2012), 1087-1131.       
13 E. N. Dancer, K. Wang and Z. Zhang, Addendum to "The limit equation for the Gross-Pitaevskii equations and S. Terracini's conjecture" [J. Funct. Anal., 262 (2012), 1087-1131], Journal of Functional Analysis, 264 (2013), 1125-1129.       
14 E. N. Dancer and Z. Zhang, Dynamics of Lotka-Volterra competition systems with large interaction, Journal of Differential Equations, 182 (2002), 470-489.       
15 E. De Giorgi, New problems on minimizing movements, in Boundary Value Problems for PDE and Applications (eds. C. Baiochhi and J.L. Lions), RMA Res. Notes Appl. Math., 29, Masson, Paris, 1993, 81-98.       
16 L. Evans, A chemical diffusion-reaction free boundary problem, Nonlinear Anal., 6 (1982), 455-466.       
17 N. Gigli, On the heat flow on metric measure spaces: Existence, uniqueness and stability, Calculus of Variations and Partial Differential Equations, 39 (2010), 101-120.       
18 M. Gromov and R. Schoen, Harmonic maps into singular spaces and p-adic superrigidity for lattices in groups of rank one, Publications Mathématiques de L'IHÉS, 76 (1992), 165-246.       
19 W. Littman, G. Stampacchia and H. Weinberger, Regular points for elliptic equations with discontinuous coefficients, Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, 17 (1963), 43-77.       
20 F. Lin and X. Yang, Geometric Measure Theory: An Introduction, Advanced Mathematics (Beijing/Boston), Science Press, Beijing; International Press, Boston, 2002.       
21 U. Mayer, Gradient flows on nonpositively curved metric spaces and harmonic maps, Commun. Anal. Geom., 6 (1998), 199-253.       
22 B. Noris, H. Tavares, S. Terracini and G. Verzini, Uniform Hölder bounds for nonlinear Schrödinger systems with strong competition, Comm. Pure Appl. Math., 63 (2010), 267-302.       
23 W. Rudin, Real and Complex Analysis, Tata McGraw-Hill Education, 2006.
24 K. Wang and Z. Zhang, Some new results in competing systems with many species, Annales de l'Institut Henri Poincare (C) Non Linear Analysis, 27 (2010), 739-761.       

Go to top