`a`
Discrete and Continuous Dynamical Systems - Series A (DCDS-A)
 

Regularity of pullback random attractors for stochastic FitzHugh-Nagumo system on unbounded domains
Pages: 441 - 466, Issue 1, January 2015

doi:10.3934/dcds.2015.35.441      Abstract        References        Full text (510.5K)           Related Articles

Bao Quoc Tang - Institute of Mathematics and Scientific Computing, University of Graz, 36 Heinrichstraβe, 8010 Graz, Austria (email)

1 A. Adili and B. Wang, Random attractors for stochastic FitzHugh-Nagumo systems driven by deterministic non-autonomous forcing, Discrete Continuous Dyn. Syst., Series B, 18 (2013), 643-666.       
2 C. T. Anh, T. Q. Bao and N. V. Thanh, Regularity of random attractors for stochastic semilinear degenerate parabolic equations, Electronic J. Diff. Eqs., (2012), 1-22.       
3 L. Arnold, Random Dynamical Systems, Springer-Verlag, 1998.       
4 T. Q. Bao, Regularity of random attractors for stochastic reaction-diffusion equations on unbounded domains, submitted.
5 J. W. Cholewa and T. Dlotko, Global Attractors for Abstract Parabolic Problems, Cambridge University Press, 2000.       
6 H. Crauel, A. Debussche and F. Flandoli, Random attractors, J. Dynam. Differential Equations, 9 (1997), 307-341.       
7 H. Crauel and F. Flandoli, Attractors for random dynamical systems, Probab. Th. Re. Fields, 100 (1994), 365-393.       
8 J. Huang, The random attractor of stochastic FitzHugh-Nagumo equations in an infinite lattice with white noises, Physica D, 233 (2007), 83-94.       
9 P. E. Kloeden and J. A. Langa Flattening, Squeezing and the existence of random attractors, Proc. R. Soc. Lond. Ser. A, 463 (2007), 163-181.       
10 Y. Li and B. Guo, Random attractors for quasi-continuous random dynamical systems and applications to stochastic reaction-diffusion equations, J. Differential Equations, 245 (2008), 1775-1800.       
11 Y. Li and C. Zhong, Pullback attractors for the norm-to-weak continuous process and application to the nonautonomous reaction-diffusion equations, Appl. Maths. Comput., 190 (2007), 1020-1029.       
12 E. V. Vleck and B. Wang, Attractors for lattice FitzHugh-Nagumo systems, Physica D, 212 (2005), 317-336.       
13 B. Wang, Pullback attractors for non-autonomous Reaction-Diffusion equations on $\mathbb R^n$, Frontiers of Mathematics in China, 4 (2009), 563-583.       
14 B. Wang, Random attractors for the stochastic Benjamin-Bona-Mahony equation on unbounded domains, J. Differential Equations, 246 (2009), 2506-2537.       
15 B. Wang, Random attractors for the stochastic FitzHugh-Nagumo system on unbounded domains, Nonlinear Anal. TMA, 71 (2009), 2811-2828.       
16 B. Wang, Sufficient and necessary criteria for existence of pullback attractors for non-compact random dynamical systems, J. Differential Equations, 253 (2012), 1544-1583.       
17 B. Wang, Attractors for reaction-diffusion equations in unbounded domains, Physica D, 128 (1999), 41-52.       
18 B. Wang and X. Gao, Random attractors for wave equations on unbounded domains, Discrete Continuous Dyn. Syst. (suppl.), (2009), 800-809.       
19 G. Wang and Y. Tang, $(L^2,H^1)$-random attractors for stochastic reaction diffusion equation on unbounded domains, Abstr. Appl. Anal., (2013), 279509, 23 pp.       
20 Y. Wang and C. K. Zhong, On the existence of pullback attractors for non-autonomous reaction diffusion, Dyn. Syst., 23 (2008), 1-16.       
21 B. Wang, Pullback attractors for the non-autonomous FitzHugh-Nagumo system on unbounded domains, Nonlinear Anal. TMA, 70 (2009), 3799-3815.       
22 B. Wang, Dynamical behavior of the almost-periodic discrete FitzHugh-Nagumo systems, Internat. J. Bifur. Chaos, 17 (2007), 1673-1685.       
23 L. Xu and W. Yan, Stochastic FitzHugh-Nagumo systems with delay, Taiwanese J. Maths., 16 (2012), 1079-1103.       
24 W. Zhao and Y. Li, $(L^2,L^p)$-random attractors for stochastic reaction-diffusion equation on unbounded domains, Nonlinear Anal. TMA, 75 (2012), 485-502.       
25 W. Zhao, $H^1$-random attractors for stochastic reaction diffusion equations with additive noise, Nonlinear Anal. TMA., 84 (2013), 61-72.       
26 W. Zhao, $H^1$-random attractors and random equilibria for stochastic reaction diffusion equations with multiplicative noises, Comm. Nonlinear Sci. Numer. Simulat., 18 (2013), 2707-2721.       
27 C. Zhong, M. Yang and C. Sun, The existence of global attractors for the norm-to-weak continuous semigroup and application to the nonlinear reaction-diffusion equations, J. Differential Equations, 223 (2006), 367-399.       

Go to top