`a`
Discrete and Continuous Dynamical Systems - Series A (DCDS-A)
 

Optimal Liouville-type theorems for a parabolic system
Pages: 399 - 409, Issue 1, January 2015

doi:10.3934/dcds.2015.35.399      Abstract        References        Full text (336.0K)           Related Articles

Quoc Hung Phan - Institute of Research and Development, Duy Tan University, Da Nang, Vietnam (email)

1 K. Ammar and P. Souplet, Liouville-type theorems and universal bounds for nonnegative solutions of the porous medium equation with source, Discrete Contin. Dyn. Syst., 26 (2010), 665-689.       
2 T. Bartsch, N. Dancer and Z.-Q. Wang, A Liouville theorem, a-priori bounds, and bifurcating branches of positive solutions for a nonlinear elliptic system, Calc. Var. Partial Differential Equations, 37 (2010), 345-361.       
3 T. Bartsch, P. Poláčik and P. Quittner, Liouville-type theorems and asymptotic behavior of nodal radial solutions of semilinear heat equations, J. Eur. Math. Soc. (JEMS), 13 (2011), 219-247.       
4 M.-F. Bidaut-Véron, Initial blow-up for the solutions of a semilinear parabolic equation with source term, in Équations aux Dérivées Partielles et Applications, Gauthier-Villars, Éd. Sci. Méd. Elsevier, Paris, 1998, 189-198.       
5 M.-F. Bidaut-Véron and T. Raoux, Asymptotics of solutions of some nonlinear elliptic systems, Comm. Partial Differential Equations, 21 (1996), 1035-1086.       
6 E. N. Dancer, J. Wei and T. Weth, A priori bounds versus multiple existence of positive solutions for a nonlinear Schrödinger system, Ann. Inst. H. Poincaré Anal. Non Linéaire, 27 (2010), 953-969.       
7 E. N. Dancer and T. Weth, Liouville-type results for non-cooperative elliptic systems in a half-space, J. Lond. Math. Soc. (2), 86 (2012), 111-128.       
8 Y. Guo, B. Li and J. Wei, Entire nonradial solutions for non-cooperative coupled elliptic system with critical exponents, J. Diff. Equations, 256 (2014), 3463-3495.       
9 P. Poláčik, P. Quittner and P. Souplet, Singularity and decay estimates in superlinear problems via Liouville-type theorems. I. Elliptic equations and systems, Duke Math. J., 139 (2007), 555-579.       
10 P. Poláčik, P. Quittner and P. Souplet, Singularity and decay estimates in superlinear problems via Liouville-type theorems. II. Parabolic equations, Indiana Univ. Math. J., 56 (2007), 879-908.       
11 P. Quittner and P. Souplet, Superlinear Parabolic Problems. Blow-up, Global Existence and Steady States, Birkhäuser Advanced Texts: Basler Lehrbücher [Birkhäuser Advanced Texts: Basel Textbooks], Birkhäuser Verlag, Basel, 2007.       
12 P. Quittner and P. Souplet, Parabolic Liouville-type theorems via their elliptic counterparts, Discrete Contin. Dyn. Syst., suppl. (2011), 1206-1213.       
13 P. Quittner and P. Souplet, Optimal Liouville-type theorems for noncooperative elliptic Schrödinger systems and applications, Comm. Math. Phys., 311 (2012), 1-19.       
14 H. Tavares, S. Terracini, G. Verzini and T. Weth, Existence and nonexistence of entire solutions for non-cooperative cubic elliptic systems, Comm. Partial Differential Equations, 36 (2011), 1988-2010.       
15 J. Wei and T. Weth, Radial solutions and phase separation in a system of two coupled Schrödinger equations, Arch. Ration. Mech. Anal., 190 (2008), 83-106.       

Go to top