Contribution to the ergodic theory of robustly transitive maps
Pages: 353  365,
Issue 1,
January
2015
doi:10.3934/dcds.2015.35.353 Abstract
References
Full text (434.8K)
Related Articles
Cristina Lizana  Departamento de Matemática, Facultad de Ciencias, La Hechicera, Universidad de los Andes Mérida, 5101, Venezuela (email)
Vilton Pinheiro  Departamento de Matemática, Universidade Federal da Bahia, Av. Ademar de Barros s/n, 40170110 Salvador, Brazil (email)
Paulo Varandas  Departamento de Matemática, Universidade Federal da Bahia, Av. Ademar de Barros s/n, 40170110 Salvador, Brazil (email)
1 
F. Abdenur, C. Bonatti, S. Crovisier, L. Díaz and L. Wen, Periodic points and homoclinic classes, Ergodic Theory Dynam. Systems, 27 (2007), 122. 

2 
J. F. Alves and V. Pinheiro, GibbsMarkov structures and limit laws for partially hyperbolic attractors with mostly expanding central direction, Adv. Math., 223 (2010), 17061730. 

3 
C. Bonatti, L. Díaz and E. Pujals, A $C^1$generic dichotomy for diffeomorphisms: Weak forms of hyperbolicity or infinitely many sinks or sources, Ann. of Math. (2), 158 (2003), 355418. 

4 
C. Bonatti, L. Díaz and R. Ures, Minimality of strong stable and unstable foliations for partially hyperbolic diffeomorphisms, J. Inst. Math. Jussieu, 1 (2002), 513541. 

5 
J. Buzzi, T. Fisher, M. Sambarino and C. Vasquez, Maximal Entropy Measures for certain Partially Hyperbolic, Derived from Anosov systems, Ergodic Thery Dynam. Systems, 32 (2012), 6379. 

6 
M. Carvalho, SinaiRuelleBowen measures for Ndimensional derived from Anosov diffeomorphisms, Ergodic Theory Dynam. Systems, 13 (1993), 2144. 

7 
A. Castro, Fast mixing for attractors with a mostly contracting central direction, Ergodic Theory Dynam. Systems, 24 (2004), 1744. 

8 
A. Castro, New criteria for hyperbolicity based on periodic points, Bull. Braz. Math. Soc., 42 (2011), 455483. 

9 
S. Hayashi, Connecting invariant manifolds and the solution of the $C^1$stability and $\Omega$stability conjectures for flows, Ann. of Math.(2), 145 (1997), 81137. 

10 
C. Lizana, Robust Transitivity for Endomorphisms, Ph.D thesis, IMPA in Brazil, 2010. 

11 
C. Lizana and E. Pujals, Robust transitivity for endomorphisms, Ergodic Theory Dynam. Systems, 33 (2013), 10821114. 

12 
K. Moriyasu, The ergodic closing lemma for $C^1$ regular maps, Tokyo J. Math., 15 (1992), 171183. 

13 
V. Pinheiro, Expanding measures, Ann. Inst. H. Poincaré Anal. Non Linéaire, 28 (2011), 889939. 

14 
R. Ures, Intrinsic ergodicity of partially hyperbolic diffeomorphisms with a hyperbolic linear part, Proc. Amer. Math. Soc., 140 (2012), 19731985. 

15 
P. Varandas, Statistical properties of generalized Viana maps, Dyn. Syst., 29 (2014), 167189. 

16 
L. Wen, The $C^1$Closing Lemma for nonsingular endomorphisms, Ergodic Theory Dynam. Systems, 11 (1991), 393412. 

17 
L. Wen, A uniform $C^1$connecting lemma, Discrete Contin. Dyn. Syst., 8 (2002), 257265. 

18 
L. S. Young, Recurrence times and rates of mixing, Israel J. Math., 110 (1999), 153188. 

Go to top
