`a`
Discrete and Continuous Dynamical Systems - Series A (DCDS-A)
 

Parametric normal forms for Bogdanov--Takens singularity; the generalized saddle-node case
Pages: 205 - 224, Issue 1, January 2015

doi:10.3934/dcds.2015.35.205      Abstract        References        Full text (503.3K)           Related Articles

Majid Gazor - Department of Mathematical Sciences, Isfahan University of Technology, Isfahan 84156-83111, Iran (email)
Mojtaba Moazeni - Department of Mathematical Sciences, Isfahan University of Technology, Isfahan 84156-83111, Iran (email)

1 A. Algaba, E. Freire, E. Gamero and C. Garcia, Quasi-homogeneous normal forms, J. Comp. and Appl. Math., 150 (2003), 193-216.       
2 A. Baider and R. C. Churchill, Unique normal forms for planar vector fields, Math. Z., 199 (1988), 303-310.       
3 A. Baider and J. A. Sanders, Unique normal forms: The nilpotent Hamiltonian case, J. Differential Equations, 92 (1991), 282-304.       
4 A. Baider and J. A. Sanders, Further reductions of the Takens-Bogdanov normal form, J. Differential Equations, 99 (1992), 205-244.       
5 G. Chen and J. D. Dora, Further reductions of normal forms for dynamical systems, J. Differential Equations, 166 (2000), 79-106.       
6 G. Chen, D. Wang and X. Wang, Unique normal forms for nilpotent planar vector fields, Internat. J. Bifur. Chaos, 12 (2002), 2159-2174.       
7 M. Gazor and F. Mokhtari, Normal forms of Hopf-Zero singularity, preprint, arXiv:1210.4467v4.
8 M. Gazor and F. Mokhtari, Volume-preserving normal forms of Hopf-Zero singularity, Nonlinearity, 26 (2013), 2809-2832.       
9 M. Gazor, F. Mokhtari and J. A. Sanders, Normal forms for Hopf-Zero singularities with nonconservative nonlinear part, J. Differential Equations, 254 (2013), 1571-1581.       
10 M. Gazor and P. Yu, Spectral sequences and parametric normal forms, J. Differential Equations, 252 (2012), 1003-1031.       
11 M. Gazor and P. Yu, Formal decomposition method and parametric normal forms, Internat. J. Bifur. Chaos, 20 (2010), 3487-3515.       
12 M. Gazor and P. Yu, Infinite order parametric normal form of Hopf singularity, Internat. J. Bifur. Chaos, 18 (2008), 3393-3408.       
13 H. Kokubu, H. Oka and D. Wang, Linear grading function and further reduction of normal forms, J. Differential Equations, 132 (1996), 293-318.       
14 M. Moazeni, Asymptotic Unfoldings and Normal Forms of the Generalized Saddle-Node case of Bogdanov-Takens Singularity, Master Thesis (in persian), Isfahan University of Technology, Isfahan, Iran, 2011.
15 J. Murdock, Asymptotic unfoldings of dynamical systems by normalizing beyond the normal form, J. Differential Equations, 143 (1998), 151-190.       
16 J. Murdock, Normal Forms and Unfoldings for Local Dynamical Systems, Springer, New York, 2003.       
17 J. Murdock, Hypernormal form theory: Foundations and algorithms, J. Differential Equations, 205 (2004), 424-465.       
18 J. Murdock and D. Malonza, An improved theory of asymtotic unfoldings, J. Differential Equations, 247 (2009), 685-709.       
19 J. Peng and D. Wang, A suffiecient condition for the uniqueness of normal forms and unique normal forms of generalized Hopf singularities, Internat. J. Bifur. Chaos, 14 (2004), 3337-3345.       
20 E. Stróżyna, The analytic and formal normal form for the nilpotent singularity. The case of generalized saddle-node, Bull. Sci. Math., 126 (2002), 555-579.       
21 E. Stróżyna and H. Żoladek, The complete formal normal form for the Bogdanov-Takens singularity, preprint, (2013), private communication.
22 E. Stróżyna and H. Żoladek, Divergence of the reduction to the multidimensional nilpotent Takens normal form, Nonlinearity, 24 (2011), 3129-3141.       
23 E. Stróżyna and H. Żoladek, The analytic and formal normal form for the nilpotent singularity, J. Differential Equations, 179 (2002), 479-537.       
24 E. Stróżyna and H. Żoladek, Orbital formal normal forms for general Bogdanov-Takens singularity, J. Differential Equations, 193 (2003), 239-259.       
25 D. Wang, J. Li, M. Huang and Y. Jiang, Unique normal form of Bogdanos-Takens singularities, J. Differential Equations, 163 (2000), 223-238.       
26 J. Li, L. Zhang and D. Wang, Unique normal form of a class of 3 dimensional vector fields with symmetries, J. Differential Equations, 257 (2014), 2341-2359.       
27 P. Yu, Computation of the simplest normal forms with perturbation parameters based on Lie transform and rescaling, J. Comp. and App. Math., 144 (2002), 359-373.       
28 P. Yu and Y. Yuan, A matching pursuit technique for computing the simplest normal forms of vector fields, J. Symbolic Computation, 35 (2003), 591-615.       
29 Y. Yuan and P. Yu, Computation of simplest normal forms of differential equations associated with a double-zero eigenvalues, Internat. J. Bifur. Chaos, 11 (2001), 1307-1330.       
30 P. Yu and A. Y. T. Leung, The simplest normal form of Hopf bifurcation, Nonlinearity, 16 (2003), 277-300.       

Go to top