`a`
Discrete and Continuous Dynamical Systems - Series A (DCDS-A)
 

Periodic orbits and invariant cones in three-dimensional piecewise linear systems
Pages: 59 - 72, Issue 1, January 2015

doi:10.3934/dcds.2015.35.59      Abstract        References        Full text (367.5K)           Related Articles

Victoriano Carmona - Escuela Técnica Superior de Ingeniería, Departamento de Matemática Aplicada II, Universidad de Sevilla, Camino de los Descubrimientos s/n, 41092 Sevilla, Spain (email)
Emilio Freire - Escuela Técnica Superior de Ingeniería, Departamento de Matemática Aplicada II, Universidad de Sevilla, Camino de los Descubrimientos s/n, 41092 Sevilla, Spain (email)
Soledad Fernández-García - MYCENAE Project-Team, Paris-Rocquencourt Centre, Inria, Domaine de Voluceau BP 105, 78153 Le Chesnay Cedex, France (email)

1 S. Barnet and R. G. Cameron, Introduction to Mathematical Control Theory, Oxford University Press, New York, 1985.       
2 T. R. Blows and L. M. Perko, Bifurcation of limit cycles from centers and separatrix cycles of Planar analityc systems, SIAM Rev., 36 (1994), 341-376.       
3 V. Carmona, S. Fernández-García and E. Freire, Saddle-node bifurcation of invariant cones in 3D piecewise linear systems, Phys. D, 241 (2012), 623-635.       
4 V. Carmona, E. Freire, E. Ponce and F. Torres, On simplifying and classifying piecewise-linear systems, IEEE Trans. Circuits Systems I Fund. Theory Appl., 49 (2002), 609-620.       
5 V. Carmona, E. Freire, E. Ponce, J. Ros and F. Torres, Limit cycle bifurcation in 3D continuous piecewise linear systems with two zones. Application to Chua's circuit, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 15 (2005), 3153-3164.       
6 V. Carmona, E. Freire, E. Ponce and F. Torres, Bifurcation of invariant cones in piecewise linear homogeneous systems, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 15 (2005), 2469-2484.       
7 V. Carmona, E. Freire, E. Ponce and F. Torres, The continuous matching of two stable linear systems can be unstable, Discrete and Contin. Dyn. Syst., 16 (2006), 689-703.       
8 A. Cima, J. Llibre and M. A. Teixeira, Limit cycles of some polynomial differential systems in dimension 2, 3 and 4, via averaging theory, Appl. Anal., 87 (2008), 149-164.       
9 Earl A. Coddington and N. Levinson, Theory of Ordinary Differential Equations, McGraw-Hill, New York, 1955.       
10 S. Coombes, R. Thul and K. C. A. Wedgwood, Nonsmooth dynamics in spiking neuron models, Phys. D, 241 (2012), 2042-2057.       
11 Z. Du, Y. Li and W. Zhang, Bifurcation of periodic orbits in a class of planar Filippov systems, Nonlinear Analysis, 69 (2008), 3610-3628.       
12 E. Freire, E. Ponce, F. Rodrigo and F. Torres, Bifurcation sets of continuous piecewise linear systems with two zones, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 8 (1998), 2073-2097.       
13 E. Freire, E. Ponce and J. Ros, Limit cycle bifurcation from center in symmetric piecewise-linear systems, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 9 (1999), 895-907.       
14 E. Freire, E. Ponce and F. Torres, Hopf-like bifurcations in planar piecewise linear systems, Publ. Mat., 41 (1997), 135-148.       
15 C. Kahlert and O. E. Rössler, Anaytical properties of Poincaré halfmaps in a class of piecewise-linear dynamical systems, Z. Naturforsch. A, 40 (1985), 1011-1025.       
16 M. Kunze, Lecture Notes in Mathematics, Springer, 2000.       
17 T. Küpper, Invariant cones for non-smooth dynamical systems, Math. Comput. Simulation., 79 (2008), 1396-1408.       
18 T. Küpper, D. Weiss and H. A. Hoshman, Invariant manifolds for nonsmooth systems, Phys. D, 241 (2012), 1895-1902.       
19 J. Llibre and A. E. Teruel, Existence of Poincaré maps in piecewise linear differential systems in $\mathbb R^N$, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 14 (2004), 2843-2851.       
20 W. S. Loud, Periodic solutions of a perturbed autonomous system, Ann. of Math., 70 (1959), 490-529.       
21 G. M. Maggio, M. di Bernardo and M. P. Kennedy, Nonsmooth bifurcations in a piecewise-linear model of the Colpitts oscillator, IEEE Trans. Circuits Systems I Fund. Theory Appl., 47 (2000), 1160-1177.       
22 F. Verhulst, Nonlinear Differential Equations and Dynamical Systems, Springer, Berlín, 1996.       

Go to top