Discrete and Continuous Dynamical Systems - Series A (DCDS-A)

Smooth stabilizers for measures on the torus
Pages: 43 - 58, Issue 1, January 2015

doi:10.3934/dcds.2015.35.43      Abstract        References        Full text (415.2K)           Related Articles

Aaron W. Brown - Department of Mathematics, The Pennsylvania State University, State College, PA 16802, United States (email)

1 S. K. Aranson, G. R. Belitsky and E. V. Zhuzhoma, Introduction to the Qualitative Theory of Dynamical Systems on Surfaces, American Mathematical Society, Providence, RI, 1996.       
2 M. Baake and J. A. G. Roberts, Reversing symmetry group of $ Gl(2,\mathbbZ)$ and $ PGl(2,\mathbbZ)$ matrices with connections to cat maps and trace maps, J. Phys. A, 30 (1997), 1549-1573.       
3 L. Barreira and Y. Pesin, Nonuniform Hyperbolicity, Mathematics and its Applications, Cambridge University Press, Cambridge, 2007.       
4 L. Barreira, Y. Pesin and J. Schmeling, Dimension and product structure of hyperbolic measures, Ann. of Math. (2), 149 (1999), 755-783.       
5 A. W. Brown, Rigidity Properties of Measures on the Torus, Ph.D thesis, Tufts University, 2011.
6 M. Einsiedler and E. Lindenstrauss, Rigidity properties of $\mathbbZ^d$-actions on tori and solenoids, Electron. Res. Announc. Amer. Math. Soc., 9 (2003), 99-110.       
7 J. Franks, Anosov diffeomorphisms, in Global Analysis (Proc. Sympos. Pure Math., Vol. XIV, Berkeley, Calif., 1968), Amer. Math. Soc., Providence, R.I., 1970, 61-93.       
8 B. Hasselblatt, Regularity of the Anosov splitting and of horospheric foliations, Ergodic Theory Dynam. Systems, 14 (1994), 645-666.       
9 H. Hu, Some ergodic properties of commuting diffeomorphisms, Ergodic Theory Dynam. Systems, 13 (1993), 73-100.       
10 B. Kalinin and A. Katok, Measure rigidity beyond uniform hyperbolicity: Invariant measures for Cartan actions on tori, J. Mod. Dyn., 1 (2007), 123-146.       
11 B. Kalinin, A. Katok and F. Rodriguez Hertz, Nonuniform measure rigidity, Ann. of Math. (2), 174 (2011), 361-400.       
12 A. Katok and R. J. Spatzier, Invariant measures for higher-rank hyperbolic abelian actions, Ergodic Theory Dynam. Systems, 16 (1996), 751-778.       
13 A. Katok and B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems, Cambridge University Press, Cambridge, 1995.       
14 F. Ledrappier and L.-S. Young, The metric entropy of diffeomorphisms. II. Relations between entropy, exponents and dimension, Ann. of Math. (2), 122 (1985), 540-574.       
15 R. Mañé, Ergodic Theory and Differentiable Dynamics, Ergebnisse der Mathematik und ihrer Grenzgebiete (3), Springer-Verlag, Berlin, 1987.       
16 A. Manning, There are no new Anosov diffeomorphisms on tori, Amer. J. Math., 96 (1974), 422-429.       
17 S. E. Newhouse, On codimension one Anosov diffeomorphisms, Amer. J. Math., 92 (1970), 761-770.       
18 V. I. Oseledec, A multiplicative ergodic theorem. Characteristic Ljapunov, exponents of dynamical systems, Trudy Moskov. Mat. Obšč., 19 (1968), 179-210.       
19 J. C. Oxtoby and S. M. Ulam, Measure-preserving homeomorphisms and metrical transitivity, Annals of Mathematics. Second Series, 42 (1941), 874-920.       
20 J. Palis, C. Pugh and R. C. Robinson, Nondifferentiability of invariant foliations, in Dynamical Systems-Warwick 1974, Springer, (1975), 234-240.       
21 C. Pugh, M. Shub and A. Wilkinson, Hölder foliations, Duke Math. J., 86 (1997), 517-546.       
22 V. A. Rohlin, On the fundamental ideas of measure theory, Amer. Math. Soc. Translation, 1952 (1952), 55 pp.       
23 D. J. Rudolph, $\times 2$ and $\times 3$ invariant measures and entropy, Ergodic Theory Dynam. Systems, 10 (1990), 395-406.       

Go to top