`a`
Discrete and Continuous Dynamical Systems - Series A (DCDS-A)
 

Uniqueness of conservative solutions to the Camassa-Holm equation via characteristics
Pages: 25 - 42, Issue 1, January 2015

doi:10.3934/dcds.2015.35.25      Abstract        References        Full text (439.5K)           Related Articles

Alberto Bressan - Department of Mathematics, Penn State University, University Park, Pa.16802, United States (email)
Geng Chen - School of Mathematics, Georgia Institute of Technology, Atlanta, Ga. 30332, United States (email)
Qingtian Zhang - Department of Mathematics, Penn State University, University Park, Pa. 16802, United States (email)

1 A. Bressan, Hyperbolic Systems of Conservation Laws. The One Dimensional Cauchy Problem, Oxford University Press, 2000.       
2 A. Bressan and A. Constantin, Global conservative solutions to the Camassa-Holm equation, Arch. Rat. Mech. Anal., 183 (2007), 215-239.       
3 A. Bressan and A. Constantin, Global dissipative solutions to the Camassa-Holm equation, Analysis and Applications, 5 (2007), 1-27.       
4 A. Bressan and M. Fonte, An optimal transportation metric for solutions of the Camassa-Holm equation, Methods and Applications of Analysis, 12 (2005), 191-220.       
5 R. Camassa and D. D. Holm, An integrable shallow water equation with peaked solitons, Phys. Rev. Lett., 71 (1993), 1661-1664.       
6 C. Dafermos, Generalized characteristics and the Hunter-Saxton equation, J. Hyperbolic Diff. Equat., 8, (2011) 159-168.       
7 L. C. Evans, Partial Differential Equations, Second edition, American Mathematical Society, Providence, RI, 2010.       
8 K. Grunert, H. Holden and X. Raynaud, Lipschitz metric for the periodic Camassa-Holm equation, J. Differential Equations, 250 (2011), 1460-1492.       
9 K. Grunert, H. Holden and X. Raynaud, Lipschitz metric for the Camassa-Holm equation on the line, Discrete Contin. Dyn. Syst., 33 (2013), 2809-2827.       
10 H. Holden and X. Raynaud, Global conservative solutions of the Camassa-Holm equation - a Lagrangian point of view, Comm. Partial Diff. Equat., 32 (2007), 1511-1549.       
11 Z. Xin and P. Zhang, On the weak solutions to a shallow water equation, Comm. Pure Appl. Math., 53 (2000), 1411-1433.       
12 Z. Xin and P. Zhang, On the uniqueness and large time behavior of the weak solutions to a shallow water equation, Comm. Partial Diff. Equat., 27 (2002), 1815-1844.       

Go to top